

Chapter Menu

Lesson 10-1 Line and Angle Relationships
Lesson 10-2 Congruent Triangles
Lesson 10-3 Transformations on the Coordinate Plane
Lesson 10-4 Quadrilaterals
Lesson 10-5 Polygons
Lesson 10-6 Area: Parallelograms, Triangles, and Trapezoids

Lesson 10-7 Circles: Circumference and Area
Lesson 10-8 Area: Composite Figures

Lesson Menu

Five-Minute Check (over Chapter 9)
Main Ideas and Vocabulary
Key Concept: Names of Special Angles
Key Concept: Parallel Lines Cut by a Transversal
Example 1: Find Measures of Angles
Example 2: Real-World Example
Example 3: Find Measures of Angles
Example 4: Real-World Example
Concept Summary: Line and Angle Relationships

10-1 Line and Angle Relationships

Main Ideas

- Identify the relationships of angles formed by two parallel lines and a transversal.
- Identify the relationships of vertical, adjacent, complementary, and supplementary angles.

New Vocabulary

- parallel lines
- transversal
- interior angles
- exterior angles
- alternate interior angles
- alternate exterior angles
- corresponding angles
- vertical angles
- adjacent angles
- complementary angles
- supplementary angles
- perpendicular lines

$10-1$
 Line and Angle Relationships

KEY CONCEPT

Names of Special Angles

The eight angles formed by parallel lines and a transversal have special names.

- Interior angles lie inside the parallel lines.
$\angle 3, \angle 4, \angle 5, \angle 6$
- Exterior angles lie outside the parallel lines.
$\angle 1, \angle 2, \angle 7, \angle 8$
- Alternate interior angles are on opposite sides of the transversal and inside the parallel lines. $\angle 3$ and
 $\angle 5, \angle 4$ and $\angle 6$
- Alternate exterior angles are on opposite sides of the transversal and outside the parallel lines. $\angle 1$ and $\angle 7, \angle 2$ and $\angle 8$
- Corresponding angles are in the same position on the parallel lines in relation to the transversal. $\angle 1$ and $\angle 5, \angle 2$ and $\angle 6, \angle 3$ and $\angle 7, \angle 4$ and $\angle 8$

10-1 Line and Angle Relationships

KEY CONCEPT

Parallel Lines Cut by a Transversal

If two parallel lines are cut by a transversal, then

- corresponding angles are congruent,
- alternate interior angles are congruent, and
- alternate exterior angles are congruent.

EXAMPLE
 Find Measures of Angles

(1) In the figure, $m \| n$ and t is a transversal. If $m \angle 7=123^{\circ}$, find $m \angle 2$ and $m \angle 8$.

Since $\angle 7$ and $\angle 2$ are alternate exterior angles, they are congruent. So, $m \angle 2=123^{\circ}$.

Answer: $m \angle 2=123^{\circ}$
Since $\angle 7$ and $\angle 8$ are
corresponding angles, they are congruent. So, $m \angle 8=123^{\circ}$.

Answer: $m \angle 8=123^{\circ}$

10-1 Line and Angle Relationships

CHECK Your Progress

(1) In the figure, $m \| n$ and t is a transversal. If $m \angle 4=57^{\circ}$, find $m \angle 5$ and $m \angle 1$.
(A.) $m \angle 5=57^{\circ} ; m \angle 1=57^{\circ}$
B. $m \angle 5=123^{\circ} ; m \angle 1=123^{\circ}$

C. $m \angle 5=57^{\circ} ; m \angle 1=123^{\circ}$
D. $m \angle 5=123^{\circ} ; m \angle 1=57^{\circ}$

Real-World EXAMPLE

(2) LEG LIFTS Kian does leg lifts each morning. For each repetition he lifts his legs 35 degrees off the ground. What is the measure of the angle formed by his body and legs in this position?
The angles are supplementary.

$$
\begin{aligned}
x+35 & =180 & & \text { Write the equation. } \\
x+35-35 & =180-35 & & \text { Subtract } 35 \text { from } \\
x & =145 & & \text { each side. }
\end{aligned}
$$

Answer: The angle formed by his body and legs is 145°.

10-1 Line and Angle Relationships

ClIECK Your Progress

(2) SEWING Linda cuts a piece of material from the corner at a 35° angle. What is the measure of the other angle formed by the cut?
A. 145°
B. 90°
(C. 55°

D. 35°

EXAMPLE
 Find Measures of Angles

(3) ALGEBRA Angles PQR and STU are supplementary. If $m \angle P Q R=x-15$ and $m \angle S T U=x-65$, find the measure of each angle.

Step 1 Find the value of x.

$$
\begin{aligned}
m \angle P Q R+m \angle S T U & =180^{\circ} & & \text { Supplementary angles } \\
(x-15)+(x-65) & =180^{\circ} & & \text { Substitution } \\
2 x-80 & =180^{\circ} & & \text { Combine like terms. } \\
2 x & =260^{\circ} & & \text { Add } 80 \text { to each side. } \\
x & =130^{\circ} & & \text { Divide each side by } 2 .
\end{aligned}
$$

$E X A M P L$ Find Measures of Angles

(3) Step 2 Replace x with 130 to find the measure of each angle.

$$
\begin{array}{rlrl}
m \angle P Q R & =x-15 & m \angle S T U & =x-65 \\
& =130-15 \text { or } 115 & & =130-65 \text { or } 65
\end{array}
$$

Answer: $m \angle P Q R=115^{\circ}$

$$
m \angle S T U=65^{\circ}
$$

10-1 Line and Angle Relationships

CHECK Your Progress

(3) Angles $A B C$ and $D E F$ are complementary. If $m \angle A B C=x+12$ and $m \angle D E F=2 x-9$, find the measure of each angle.
A. $m \angle A B C=29^{\circ} ; m \angle D E F=61^{\circ}$
(B.) $m \angle A B C=41^{\circ} ; m \angle D E F=49^{\circ}$

0\%
C. $m \angle A B C=59^{\circ} ; m \angle D E F=121^{\circ}$
D. $m \angle A B C=71^{\circ} ; m \angle D E F=109^{\circ}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
$88 /$ CheckPoint

Real-World EXAMPLE

(4) TRANSPORTATION A road crosses railroad tracks at an angle as shown. If $m \angle 1=131^{\circ}$, find $m \angle 6$ and $m \angle 5$.

Since $\angle 1$ and $\angle 5$ are corresponding angles, they are congruent.

Answer: $m \angle 5=131^{\circ}$
Since $\angle 5$ and $\angle 6$ are
supplementary angles, the sum of their measures is 180°.

$180-131=49$
Answer: $m \angle 6=49^{\circ}$

10-1 Line and Angle Relationships

CHECK Your Progress:

(4) TRANSPORTATION Main Street crosses Broadway Boulevard and Maple Avenue at an angle as shown. If $m \angle 1=48^{\circ}$, find $m \angle 3$ and $m \angle 4$.
A. $m \angle 3=132^{\circ} ; m \angle 4=48^{\circ}$

(B.) $m \angle 3=48^{\circ} ; m \angle 4=132^{\circ}$
C. $m \angle 3=48^{\circ} ; m \angle 4=42^{\circ}$

D. $m \angle 3=42^{\circ} ; m \angle 4=138^{\circ}$

10-1 Line and Angle Relationships

CONCEPT SUMMARY

Line and Angle Relationships

Parallel Lines	Perpendicular Lines	Vertical Angles $\begin{aligned} & \angle 1 \cong \angle 3 \\ & \angle 2 \cong \angle 4 \end{aligned}$
Adjacent Angles $m \angle A B C=m \angle 1+m \angle 2$	Complementary Angles $m \angle 1+m \angle 2=90^{\circ}$	Supplementary Angles $m \angle+m \angle 2=180^{\circ}$

Lesson Menu

Five-Minute Check (over Lesson 10-1)
Main Idea and Vocabulary
Kev Concept: Corresponding Parts of Congruent Triangles

Example 1: Name Corresponding Parts
Example 2: Identify Congruent Triangles
Example 3: Real-World Example

Main Idea

- Identify congruent triangles and corresponding parts of congruent triangles.

New Vocabulary

- congruent
- corresponding parts

10-2 Congruent Triangles

KEY CONCEPT

Corresponding Parts of Congruent Triangles

Words If two triangles are congruent, their corresponding sides are congruent and their corresponding angles are congruent.

Model

Slash marks are used to indicate which sides are congruent.

Symbols Congruent Angles: $\angle X \cong \angle P, \angle Y \cong \angle Q, \angle Z \cong \angle R$
Congruent Sides: $\overline{X Y} \cong \overline{P Q}, \overline{Y Z} \cong \overline{Q R}, \overline{X Z} \cong \overline{P R}$

EXAMPLE Name Corresponding Parts

(1) Name the corresponding parts in the congruent triangles shown. Then complete the congruence statement.

$\Delta H G I \cong ?$

Answer: Corresponding Angles

$$
\angle D \cong \angle H, \angle E \cong \angle G, \angle F \cong \angle I
$$

Corresponding Sides Δ

$$
\overline{D E} \cong \overline{H G}, \overline{D F} \cong \overline{H I}, \overline{E F} \cong \overline{G l}
$$

One congruence statement is

$$
\Delta H G I \cong \triangle D E F
$$

10-2 Congruent Triangles

CHECK Your Progress:

(1) Name the corresponding parts in the congruent triangles shown. Then complete the congruence statement.

$$
\begin{array}{lll}
\text { A. } \angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F & \text { B. } & \angle A \cong \angle D, \angle B \cong \angle F, \angle C \cong \angle E \\
\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{F E}, \overline{A C} \cong \overline{D F} & \overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{F E}, \overline{A C} \cong \overline{D F} \\
& \Delta A C B \cong \Delta D F E & \\
\begin{array}{ll}
\text { C. } & \angle A C B \cong \triangle D E F \\
\overline{A B} \cong \overline{D F}, \overline{B C} \cong \overline{F E}, \overline{C A} \cong \overline{E D} & \\
& \\
& \overline{A B} \cong \overline{E F}, \overline{B C} \cong \overline{F D}, \overline{A C} \cong \overline{D F} \\
& A B C \cong \triangle D F E
\end{array} & \Delta A C B \cong \triangle D E F
\end{array}
$$

EXAMPLE Identify Congruent Triangles

(2) Determine whether the triangles shown are congruent. If so, name the corresponding parts and write a congruence statement.

Explore The drawing shows which angles are congruent and which sides are congruent.

Plan Note which segments have the same length and which angles are congruent. Write corresponding vertices in the same order.

EXAMPLI Identify Congruent Triangles

(2) Solve Angles: The arcs indicate that $\angle M \cong \angle Q$, $\angle N \cong \angle P$, and $\angle O \cong \angle R$.
Sides: The slash marks indicate that $\overline{M N} \cong \overline{Q P}, \overline{N O} \cong \overline{P R}$, and $\overline{M O} \cong \overline{Q R}$.

Answer: Since all pairs of corresponding angles and sides are congruent, the two triangles are congruent. One congruence statement is $\triangle M N O \cong \triangle Q P R$.
Check: Draw $\triangle M N O$ and $\triangle Q P R$ so that they are oriented in the same way. Then compare the angles and sides.

CHECK Your Progress

(2) Determine whether the triangles shown are congruent. If so, name the corresponding parts and write a congruence
 statement.

$$
\begin{array}{ll}
\text { A. } \angle A \cong \angle X, \angle B \cong \angle Y, \angle C \cong \angle Z & \text { B. } \\
\overline{A B} \cong \overline{X Y}, \overline{B C} \cong \overline{Y Z}, \overline{C A} \cong \overline{X Z} & \overline{A B} \cong \overline{X Z}, \overline{B C} \cong \overline{Z Y}, \overline{C A} \cong \overline{Y X} \\
\triangle A B C \cong \triangle X Y Z & \Delta A C B \cong \triangle X Z Y \\
\text { c. } \angle A \cong \angle Z, \angle B \cong \angle Y, \angle C \cong \angle X & \text { D. } \\
\hline \overline{A B} \cong \angle \overline{X Y}, \overline{B C} \cong \overline{Y Z}, \overline{C A} \cong \overline{X Z} & \overline{A B} \cong \overline{Z Y}, \overline{B C} \cong \overline{Y X}, \overline{C A} \cong \overline{X Z} \\
& \Delta A B C \cong \Delta X Y \\
& \Delta A B C \cong \Delta Z Y X
\end{array}
$$

(3) A. CONSTRUCTION A brace is used to support a tabletop. In the figure, $\triangle A B C \cong \triangle D E F$. What is the measure of $\angle F$?

$\angle F$ and $\angle C$ are corresponding angles. So, they are congruent. Since $m \angle C=50^{\circ}, m \angle F=50^{\circ}$.

Answer: $m \angle F=50^{\circ}$

Real-World EXAMPLE
(3) B. What is the length of $\overline{D F}$?

$\overline{D F}$ corresponds to $\overline{A C}$. So, $\overline{D F}$ and $\overline{A C}$ are congruent. Since $A C=2$ feet, $D F=2$ feet.

Answer: $D F=2$ feet

S

(3) A. ART In the figure, $\triangle A B C \cong \triangle D E F$. What is the measure of $\angle B$?

(A. 44°
B. 46°
C. 90°
D. 136°

Sh

(3) B. ART In the figure, $\triangle A B C \cong \triangle D E F$. What is the length of $\overline{E F}$?

A. 158 in.
B. 68 in.
C. 44 in .

Lesson Menu

Five-Minute Check (over Lesson 10-2)
Main Idea and Vocabulary
Example 1: Standardized Test Example
Example 2: Reflection in a Coordinate Plane
Example 3: Dilation in a Coordinate Plane
Concept Summary: Transformations

Main Idea

- Draw translations, reflections, and dilations on a coordinate plane.

New Vocabulary

- transformation
- image
- translation
- reflection
- line of symmetry
- dilation
- center

Standardized Test EXAMPLE

(1) Triangle $A B C$ is shown on the coordinate plane. Find the coordinates of the vertices of the image of $\triangle A B C$ translated 4 units right and 5 units down.

A $A^{\prime}(-7,2), B^{\prime}(-5,-5), C^{\prime}(1,0)$
B $\quad A^{\prime}(1,12), B^{\prime}(3,5), C^{\prime}(9,10)$
C $\quad A^{\prime}(-7,12), B^{\prime}(-5,5), C^{\prime}(1,10)$
D $A^{\prime}(1,2), B^{\prime}(3,-5), C^{\prime}(9,0)$

Standardized Test EXAMPLE

(1) Read the Test Item

This translation can be written as the ordered pair $(4,-5)$. To find the coordinates of the translated image, add 4 to each x-coordinate and add -5 to each y-coordinate.

Solve the Test Item
vertex
A(-3, 7)
$B(-1,0)$
$C(5,5)$
$+$
4 right, 5 down
translation

Answer: D

$10-3$
 Transformations on the Coordinate Plane

CHECK Your Progress:

(1) Triangle DEF is shown on the coordinate plane. Find the coordinates of the vertices of the image of $\triangle D E F$ translated 3 units right and 2 units down.

A. $\quad D^{\prime}(-4,3), E^{\prime}(-6,-1), F^{\prime}(1,-6)$
(B.) $D^{\prime}(2,3), E^{\prime}(0,-1), F^{\prime}(7,-6)$
C. $D^{\prime}(-4,7), E^{\prime}(-6,3), F^{\prime}(1,-2)$
D. $D^{\prime}(2,7), E^{\prime}(0,3), F^{\prime}(7,-2)$

EXAMPLE Reflections in a Coordinate Plane

(2) The vertices of a figure are $M(-8,6), N(5,9), O(2,1)$, and $P(-10,3)$. Graph the figure and the image of the figure after a reflection over the y-axis.
To find the coordinates of the vertices of the image after a reflection over the y-axis, multiply the x-coordinate by -1 and use the same y-coordinate.

EXAMPIE
 Reflections in a Coordinate Plane

(2) Answer:

10-3 Transformations on the Coordinate Plane

CICHECK Your Progress.

(2) The vertices of a figure are $Q(-2,4), R(-3,1), S(3,-2)$, and $T(4,3)$. Graph the figure and the image of the figure after a reflection over the y-axis.

B.

C.

D.

(2) Math Chanter

EXAMPLE Dilation in a Coordinate Plane

(3) A polygon has vertices $A(-1,1), B(1,1)$, and $C(1,2)$. Graph the polygon and the image of the polygon after a dilation centered at the origin with a scale factor of 3.

To dilate the polygon, multiply the coordinates of each vertex by 3 .

$$
\begin{array}{lll}
A(-1,1) & \rightarrow & A^{\prime}(-3,3) \\
B(1,1) & \rightarrow & B^{\prime}(3,3) \\
C(1,2) & \rightarrow & C^{\prime}(3,6)
\end{array}
$$

10-3 Transformations on the Coordinate Plane

EXAMPLE
 Dilation in a Coordinate Plane

(3) Answer:

						$\boldsymbol{y} \boldsymbol{y}$							
										C^{\prime}			
				A^{\prime}						B^{\prime}			
								C					
						A		B					
						\boldsymbol{O}							\boldsymbol{X}
						\boldsymbol{V}							

10-3. Transformations on the Coordinate Plane

CHECK Your Progress:

(3) A figure has vertices $A(2,-2), B(4,6), C(-4,4)$, and $D(-6,-2)$. Graph the figure and the image of the figure after a
A.

B.

D.

10-3 Transformations on the Coordinate Plane

CONCEPT SUMMARY
 Transformations

Translations and Reflections produce images that are the same shape and the same size. The figures are congruent to the images.
Dilations produce images that are similar (same shape, but not the same size). The figures are not congruent to the images, except when the scale factor $k=1$.

Quadrilaterals

Lesson Menu

Five-Minute Check (over Lesson 10-3)
Main Ideas and Vocabulary
Kev Concept: Angles of a Quadrilateral
Example 1: Find Angle Measures
Example 2: Real-World Example

Main Ideas

- Find the missing angle measures of a quadrilateral.
- Classify quadrilaterals.

New Vocabulary

- quadrilateral

KEY CONCEPT

Angels of a Quadrilateral

The sum of the measures of the angles of a quadrilateral is 360°.

COncepts in MQtion

Animation:
Classify Quadrilaterals

EXAMPLE
 Find Angle Measures

(1) ALGEBRA Find the value of x. Then find each missing angle measure.

The sum of the measures of the angles is 360°.

Let $m \angle Q, m \angle R, m \angle S$, and $m \angle T$ represent the measures of the angles.

EXAMPLE Find Angle Measures

© $m \angle Q+m \angle R+m \angle S+m \angle T=360$

$$
\begin{array}{r}
75+4 x+110+x=360 \\
5 x+185=360
\end{array}
$$

Angles of a quadrilateral
Substitution
Combine like terms.

$$
\begin{aligned}
5 x+185-185=360-185 & \begin{array}{l}
\text { Subtract } 185 \\
\text { from each } \\
\text { side. }
\end{array}
\end{aligned}
$$

$$
\begin{array}{rlrl}
5 x & =175 & & \text { Simplify. } \\
x & =35 & & \text { Divide each } \\
& & \text { side by } 5 .
\end{array}
$$

Answer: So, $m \angle T=35^{\circ}$ and $m \angle R=4(35)$ or 140°.

CHECK Your Progress

(1) Find the value of x. Then find each missing angle measure.

A. $x=4 ; m \angle A=4^{\circ}$ and $m \angle C=16^{\circ}$
B. $x=5 ; m \angle A=5^{\circ}$ and $m \angle C=20^{\circ}$
C. $x=40 ; m \angle A=40^{\circ}$ and $m \angle C=$ 160°
D. $x=104 ; m \angle A=104^{\circ}$ and $m \angle C=$ 416°

EXAMPLI: Classify Quadrilaterals

(2) Classify each quadrilateral using the name that best describes it.
A.

Answer: trapezoid
B.

Answer: parallelogram

ClleCK Your Progress

(2) QUILT PATTERN The photograph shows a pattern for the border of a quilt. Classify the quadrilaterals used to form the leaves using the name that best
 describes them.
A. square

0\%
i
B. rectangle
C. rhombus and rectangle
D. parallelogram and square

Lesson Menu

Five-Minute Check (over Lesson 10-4)
Main Ideas and Vocabulary
Example 1: Classify Polygons
Key Concept: Interior Angles of a Polygon
Example 2: Measures of Interior Angles

Example 3: Real-World Example

Main Ideas

- Classify polygons.
- Determine the sum of the measures of the interior and exterior angles of a polygon.

New Vocabulary

- polygon
- diagonal
- interior angles
- regular polygon

EXAMPLE Classify Polygons

(1) A. Classify the polygon.

This polygon has 5 sides.

Answer: It is a pentagon.

EXAMPLE Classify Polygons

(1) B. Classify the polygon.

This polygon has 7 sides.

Answer: It is a heptagon.

ChIECK Your Progress:

(1) A. Classify the polygon.
A. pentagon

(B.) hexagon
C. heptagon
D. octagon

CHECK Your Progress:

(1) B. Classify the polygon.
A. nonagon
B. octagon

C. heptagon
D. hexagon

(2) Math Chapter

KEY CONCEPT

Interior Angles of a Polygon

If a polygon has n sides, then $n-2$ triangles are formed. The sum of the degree measures of the interior angles of the polygon is $(n-2) 180$.

EXAMPLE
 Measures of Interior Angles

(2) Find the sum of the measures of the interior angles of a quadrilateral.

A quadrilateral has 4 sides. Therefore, $n=4$.

$$
\begin{aligned}
(n-2) 180 & =(4-2) 180 & & \text { Replace } \\
& =2(180) \text { or } 360 & & \text { Simplify } .
\end{aligned}
$$

Answer: The sum of the measures of the interior angles of a quadrilateral is 360°.

CHECK Your Progress:

(2) Find the sum of the measures of the interior angles of a pentagon.
A. 108°
(B. 540°

0\%
C. 720°
D. 900°
$88 /$ CheckPoint

Real-World EXAMPLE

(3) TRAFFIC SIGNS A stop sign is a regular octagon. What is the measure of one interior angle in a stop sign?
Step 1 Find the sum of the measures of the angles. An octagon has 8 sides. Therefore, $n=8$.

$$
\begin{array}{rlr}
(n-2) 180 & =(8-2) 180 & \\
& \text { Replace } \\
& =6(180) \text { or } 1080 & \\
\text { Simplify } .
\end{array}
$$

The sum of the measures of the interior angles is 1080°.
Step 2 Divide the sum by 8 to find the measure of one angle.

$$
1080 \div 8=135
$$

Answer: So, the measure of one interior angle in a stop sign is 135°.

ChIECK Your Progress:

(3) PICNIC TABLE A picnic table in the park is a regular hexagon. What is the measure of one interior angle in the picnic table?
A. 720°
B. 128.57°

0\%
(C. 120°
D. 108°

Area: Parallelograms, Triangles, and Trapezoids

Lesson Menu

Five-Minute Check (over Lesson 10-5)
Main Ideas and Vocabulary
Key Concepts: Area of a Parallelogram
Example 1: Find Areas of Parallelograms
Key Concepts: Area of a Triangle

Example 2: Find Areas of Triangles

Key Concepts: Area of a Trapezoid
Example 3: Find Area of a Trapezoid
Example 4: Real-World Example

Main Ideas

- Find areas of parallelograms.
- Find the areas of triangles and trapezoids.

New Vocabulary

- base
- altitude

10-6 Area: Parallelograms, Triangles, and Trapezoids

KEY CONCEPT

Words If a parallelogram has a base Model of b units and a height of h units, then the area A is $b h$ square units.

Symbols $A=b h$

EXAMPLE
 Find Areas of Parallelograms

(1) A. Find the area of the parallelogram.

The base is 3 meters.

The height is 3 meters.
$A=b h \quad \begin{aligned} & \text { Area of a } \\ & \text { parallelogram }\end{aligned}$
$A=3 \bullet 3$ Replace b with 3 and h with 3.
$A=9 \quad$ Multiply.
Answer: The area is 9 square meters.

EXAMPLE
 Find Areas of Parallelograms

(1) B. Find the area of the parallelogram.

Estimate $A=4 \times 6$ or 24
The base is 4.3 inches.

The height is 6.2 inches.

$$
\begin{array}{ll}
A=b h & \begin{array}{l}
\text { Area of a } \\
\text { parallelogram }
\end{array} \\
A=4.3 \bullet 6.2 & \begin{array}{l}
\text { Replace } b \text { with } 4.3 \\
\text { and } h \text { with 6.2. }
\end{array} \\
A=26.66 \quad & \text { Multiply. }
\end{array}
$$

Answer: The area is 26.66 square inches. Is the answer reasonable?

- ChBCR Your Progress

(1) A. Find the area of the parallelogram.

A. $6 \mathrm{~cm}^{2}$
B. $7 \mathrm{~cm}^{2}$

(C. $12 \mathrm{~cm}^{2}$
D. $14 \mathrm{~cm}^{2}$

dichleck vour Progicess

(1) B. Find the area of the parallelogram.
A. $0.975 \mathrm{ft}^{2}$
(B. $1.95 \mathrm{ft}^{2}$

C. $2.8 \mathrm{ft}^{2}$
D. $5.6 \mathrm{ft}^{2}$

10-6 Area: Parallelograms, Triangles, and Trapezoids

KEY CONCEPT

Area of a Triangle

Words If a triangle has a base of b units Model and a height of h units, then the area A is $\frac{1}{2} b h$ square units.
Symbols $A=\frac{1}{2} b h$

EXAMPLE
 Find Areas of Triangles

(2) A. Find the area of the triangle.

The base is 3 meters.
The height is 4 meters.

$$
\begin{array}{ll}
A=\frac{1}{2} b h & \begin{array}{l}
\text { Area of a } \\
\text { triangle }
\end{array} \\
A=\frac{1}{2}(3)(4) & \begin{array}{l}
\text { Replace } k \\
\text { and } h \text { with }
\end{array} \\
A=\frac{1}{2}(12) & \text { Multiply. } 3
\end{array}
$$

$$
A=6 \quad \text { Simplify. }
$$

Answer: The area of the triangle is 6 square meters.

EXAMPIE
 Find Areas of Triangles

(2) B. Find the area of the triangle.

The base is 3.9 feet.
The height is 6.4 feet.

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2}(3.9)(6.4)
\end{aligned}
$$

Area of a triangle
Replace b with 3.9 and h with 6.4.

$E X A M P D$ Find Areas of Triangles

(2) $A=\frac{1}{2}(24.96)$

Multiply. $3.9 \times 6.4=24.96$
$A=12.48$
Simplify.

Answer: The area of the triangle is 12.48 square feet.

CHECK Your Progress

(2) A. Find the area of the triangle.

A. $180 \mathrm{in}^{2}$

(B.) $90 \mathrm{in}^{2}$

C. $27 \mathrm{in}^{2}$

0\%
D. $13.5 \mathrm{in}^{2}$
(2) Math Chapter

CHIECK Your Progress

(2) B. Find the area of the triangle.
A. $4.4 \mathrm{~cm}^{2}$
B. $8.8 \mathrm{~cm}^{2}$

C. $9.36 \mathrm{~cm}^{2}$
D. $18.72 \mathrm{~cm}^{2}$

10-6 Area: Parallelograms, Triangles, and Trapezoids

KEY CONCEPT

Words If a trapezoid has bases of $a \quad$ Model units and b units and a height of h units, then the area A of the trapezoid is $\frac{1}{2} h(a+b)$ square units.

Symbols $A=\frac{1}{2} h(a+b)$

EXAMPDE Find Area of a Trapezoid

(3) Find the area of the trapezoid. The height is 6 meters.
The bases are $5 \frac{1}{4}$ meters and

$7 \frac{1}{2}$ meters. Estimate $\frac{1}{2}(6)(5+8)$ or 39
$A=\frac{1}{2} h(a+b)$
Area of a trapezoid
$A=\frac{1}{2} \cdot 6\left(5 \frac{1}{4}+7 \frac{1}{2}\right)$
Replace h with 6 and
a with $5 \frac{1}{4}$ and b with $7 \frac{1}{2}$.
Quilis

EXAMPLE
 Find Area of a Trapezoid

(3) $A=\frac{1}{2} \cdot 6 \cdot 12 \frac{3}{4}$

$$
5 \frac{1}{4}+7 \frac{1}{2}=12 \frac{3}{4}
$$

$A=\frac{1}{2{ }_{1}^{2}} \cdot \frac{6^{6}}{1} \cdot \frac{51}{4}$
Divide out the common factors.
$A=\frac{153}{4}$ or $38 \frac{1}{4}$
Simplify.
Answer: The area of the trapezoid is $38 \frac{1}{4}$ square meters.

- carch Your Progress

(3) Find the area of the trapezoid. (A. $20 \mathrm{ft}^{2}$
B. $30 \mathrm{ft}^{\mathbf{2}}$

C. $40 \mathrm{ft}^{2}$

0\%
D. $60 \mathrm{ft}^{\mathbf{2}}$
(8) Math Chapter

RESOURCES $\square \square \sqrt{\square}$
(4) PAINTING A wall that needs to be painted is 16 feet wide and 9 feet tall. There is a doorway that is 3 feet by 8 feet and a window that is 6 feet by $5 \frac{1}{2}$ feet. What is the area to be painted?

To find the area to be painted, subtract the areas of the door and window from the area of the entire wall.

Estimate $A=(15 \bullet 10)-(3 \bullet 10+6 \bullet 6)$ or about 84
(4) Area of the wall Area of the door

$$
\begin{aligned}
& A=b h \\
& A=16 \bullet 9 \\
& A=144 \\
& A=b h \\
& A=3 \bullet 8 \\
& A=24
\end{aligned}
$$

$$
\begin{aligned}
& A=b h \\
& A=6 \cdot 5 \frac{1}{2} \\
& A=33
\end{aligned}
$$

Answer: The area to be painted is $144-24-33$ or 87 square feet. The answer is close to the estimate so the answer is reasonable.
(4) GARDENING A garden needs to be covered with fresh soil. The garden is 12 feet wide and 15 feet long. A rectangular concrete path runs through the middle of the garden and is 3 feet wide and 15 feet long. Find the area of the garden which needs to be covered with fresh soil.

A. $225 \mathrm{ft}^{2}$

B. $180 \mathrm{ft}^{2}$
C. $135 \mathrm{ft}^{2}$
D. $45 \mathrm{ft}^{2}$
 Qum

Lesson Menu

Five-Minute Check (over Lesson 10-6)
Main Ideas and Vocabulary
Key Concept: Circumference of a Circle
Example 1: Find the Circumference of a Circle
Example 2: Real-World Example
Key Concept: Area of a Circle
Example 3: Find Areas of Circles

Main Ideas

- Find circumference of circles.
- Find area of circles.

New Vocabulary

- circle
- diameter
- center
- circumference
- radius
- π (pi)

KEY CONCEPT

Words The circumference of a circle is equal to its diameter times π, or 2 times its radius times π.

Symbols $C=\pi d$ or $C=2 \pi r$

COncepts in MQtion

Interactive Lab:
Circumference and Diameter

EXAMPLE
 Find the Circumference of a Circle

(1) A. Find the circumference of the circle to the nearest tenth.

$$
\begin{aligned}
C & =\pi d & & \text { Circumference of a circle } \\
& =\pi \bullet 12 & & \text { Replace } d \text { with } 12 . \\
& =12 \pi & & \begin{array}{l}
\text { Simplify. This is the exact } \\
\text { circumference. }
\end{array}
\end{aligned}
$$

To estimate the circumference, use a calculator. $12 \times \mathrm{x}$ 2nd $[\pi]$ ENTER 37.69911184
Answer: The circumference is about 37.7 inches.

EXAMPRE
 Find the Circumference of a Circle

(1) B. Find the circumference of the circle to the nearest tenth.

$$
\begin{array}{rlrl}
C & =2 \pi r & & \text { Circumference of a circle } \\
& =2 \bullet \pi \bullet 7.1 & \text { Replace } r \text { with } 7.1 . \\
& \approx 44.6 & & \text { Simplify. Use a calculator. }
\end{array}
$$

Answer: The circumference is about 44.6 meters.

Circles: Circumference and Area

Sh

(1) A. Find the circumference of the circle to the nearest tenth.
A. 12 ft

(B. 12.6 ft
C. 25.1 ft
D. 50.3 ft

ClIECK Your Progress

(1) B. Find the circumference of the circle to the nearest tenth.
A. 5.0 cm

B. 8.0 cm
C. 10.1 cm
D. 32.2 cm

Real-World EXAMPLE

(2) LANDSCAPING A landscaper has a tree whose roots form a ball-shaped bulb with a circumference of 110 inches. What is the minimum diameter that the landscaper will have to dig the hole in order to plant the tree?

Explore You know the circumference of the roots of the tree. You need to know the diameter of the hole to be dug.
Plan Use the formula for the circumference of a circle to find the diameter.
(2) Solve

$$
\begin{aligned}
C & =\pi d \\
110 & =\pi \cdot d \\
\frac{110}{\pi} & =d \\
35.0 & \approx d
\end{aligned}
$$

Circumference of a circle
Replace C with 110 .
Divide each side by π.
Simplify. Use a calculator.
(2) Answer: The diameter of the hole should be at least 35 inches.
Check Is the solution reasonable? Check by replacing d with 35 in $C=\pi d$.

$$
\begin{aligned}
& C=\pi d \\
& C=\pi \bullet 35 \\
& C=110
\end{aligned}
$$

Circumference of a circle
Replace d with 35 .
Simplify. Use a
calculator.

The solution is reasonable.

ACHECK Your Progress:

(2) SWIMMING POOL A circular swimming pool has a circumference of 48 feet. Matt must swim across the diameter of the pool. How far will Matt swim?
A. 7.6 ft
(B. 15.3 ft

0\%
C. $\mathbf{4 7 . 1} \mathrm{ft}$
D. 150.7 ft

$10-7$
 Circles: Circumference and Area

KEY CONCEPT
Words The area of a circle is equal to Model π times the square of its radius.
Symbols $A=\pi r^{2}$ Area of a Circle

EXAMPLE Find Areas of Circles

(3) A. Find the area of the circle. Round to the nearest tenth.

Estimate

$$
\begin{array}{rlrl}
A & =\pi r^{2} & & \text { Area of a circle } \\
& =\pi \bullet 17^{2} & & \text { Replace } r \text { with } 17 . \\
& =\pi \bullet 289 & & \text { Evaluate } 17^{2} . \\
& \approx 907.9 \mathrm{ft}^{2} & \begin{array}{l}
\text { Use a calculator. The } \\
\text { answer is reasonable. }
\end{array}
\end{array}
$$

Answer: The area is about 907.9 square feet.

EXAMPLE Find Areas of Circles

(3) B. Find the area of the circle. Round to the nearest tenth.

Estimate

$$
\begin{aligned}
A & =\pi r^{2} \\
& =\pi \bullet 4.15^{2} \\
& =\pi \bullet 17.2225 \\
& \approx 54.1 \mathrm{~cm}^{2}
\end{aligned}
$$

$3 \cdot 16$ or 48
Area of a circle
Replace r with 4.15.
Evaluate (4.15) ${ }^{2}$.
Use a calculator.
The answer is reasonable.

Answer: The area is about 54.1 square centimeters.

ChCHECK Your Progress,

(3) A. Find the area of the circle. Round to the nearest tenth.
A. $38.5 \mathrm{~m}^{2}$
B. $44.0 \mathrm{~m}^{2}$
C. $153.9 \mathrm{~m}^{2}$
D. $615.8 \mathrm{~m}^{2}$
Q.

10-7 Circles: Circumference and Area

CHECK Your Progress

(3) B. Find the area of the circle. Round to the nearest tenth.
A. $16.3 \mathrm{in}^{2}$
B. $32.7 \mathrm{in}^{2}$

D. $339.8 \mathrm{in}^{2}$

Lesson Menu

Five-Minute Check (over Lesson 10-7)
Main Idea and Vocabulary
Concept Summary: Area Formulas
Example 1: Find Areas of Composite Figures
Example 2: Real-World Example

Main Idea

- Find area of composite figures.

New Vocabulary

- composite figures

CONCEPT SUMMARY		Area Formulas	
Triangle	Trapezoid	Parallelogram	Circle
$A=\frac{1}{2} b h$	$A=\frac{1}{2} h(a+b)$	$A=b h$	$A=\pi r^{2}$

EXAMPLE
 Find Areas of Composite Figures

(1) Find the area of the figure to the nearest tenth.

Explore You know the dimensions of the figure. You need to find its area.

Plan First, separate the figure into a triangle, square,
 and a quarter-circle. Then find the sum of the areas of the figure.

EXAMPLE
 Find Areas of Composite Figures

(1) Find the area of the figure to the nearest tenth.

Solve Area of Triangle

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2}(2)(4) \quad b=2 \text { and } h=4
\end{aligned}
$$

$A=4$
Simplify.

EXAMPLE
 Find Areas of Composite Figures

(1) Find the area of the figure to the nearest tenth.

Solve Area of Square

$$
\begin{aligned}
& A=b h \\
& A=(2)(2) \quad b \text { and } h=2
\end{aligned}
$$

$A=4 \quad$ Simplify.

EXAMPLE
 Find Areas of Composite Figures

(1) Find the area of the figure to the nearest tenth.

Solve Area of Quarter-circle

$$
\begin{array}{ll}
A=\frac{1}{4} \pi r^{2} \\
A & =\frac{1}{4} \pi \cdot 2^{2}
\end{array} \quad r=22
$$

$A \approx 3.1$
Simplify.
Answer: The area of the figure is $4+4+3.1$ or about 11.1 square inches.

Sh

(1) Find the area of the figure to the nearest tenth.
A. $71.1 \mathrm{~cm}^{2}$
B. $58.6 \mathrm{~cm}^{2}$

C. $58.3 \mathrm{~cm}^{2}$
D. $52.3 \mathrm{~cm}^{2}$

Real-World EXAMPLE

(2) CARPETING Carpeting costs $\$ 2$ per square foot. How much will it cost to carpet the area shown?

Step 1 Find the area to be carpeted. Area of Rectangle

$$
\begin{array}{ll}
A=b h & \text { Area of a rectangle } \\
A=(14)(10) & \begin{array}{l}
\text { Replace } b \text { with } 14 \\
\text { and } h \text { with } 10 .
\end{array} \\
A=140 & \text { Simplify. }
\end{array}
$$

(2) CARPETING Carpeting costs $\$ 2$ per square foot. How much will it cost to carpet the area shown?

Area of Square

$$
\begin{array}{ll}
A=b h & \text { Area of a square } \\
A=(3)(3) & \begin{array}{l}
\text { Replace } b \text { and } h \\
\text { with } 3 .
\end{array} \\
A=9 & \text { Simplify. }
\end{array}
$$

Real-World EXAMPLE

(2) CARPETING Carpeting costs $\$ 2$ per square foot. How much will it cost to carpet the area shown?

Area of Triangle

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2}(14)(12) \\
& A=84
\end{aligned}
$$

Area of a triangle
Replace b with 14 and h with 12.

Simplify.

The area to be carpeted is $140+9+84$ or 233 square feet.
(2) CARPETING Carpeting costs $\$ 2$ per square foot. How much will it cost to carpet the area shown?

Step 2 Find the cost of the carpeting.

$$
2(233)=466
$$

（2）PAINTING One gallon of paint is advertised to cover 100 square feet of wall surface．About how many gallons will be needed to paint the wall shown below？

A．about 3 gallons

B．about $\mathbf{4}$ gallons

C．about 5 gallons
0%

D．about 6 gallons

Chapter Resources Menu

$8 / 8$ CheckPoint Five-Minute Checks
\square Image Bank
, Math Tools
COncepts
in MQtion

Interactive ${ }^{+}+\boldsymbol{a b} \quad$ Circumference and Diameter

Five-Minute CHECK

Lesson 10-1 (over Chapter 9)
Lesson 10-2 (over Lesson 10-1)
Lesson 10-3 (over Lesson 10-2)
Lesson 10-4 (over Lesson 10-3)
Lesson 10-5 (over Lesson 10-4)
Lesson 10-6 (over Lesson 10-5)
Lesson 10-7 (over Lesson 10-6)
Lesson 10-8 (over Lesson 10-7)

Two-Dimensional Figures

Image Bank

To use the images that are on the following three slides in your own presentation:

1. Exit this presentation.
2. Open a chapter presentation using a full installation of Microsoft ${ }^{\circledR}$ PowerPoint ${ }^{\circledR}$ in editing mode and scroll to the Image Bank slides.
3. Select an image, copy it, and paste it into your presentation.

Two-Dimensional Figures

Image Bank

Image Bank

NAPT Ts, Two-Dimensional Figures

Image Bank

$\mathrm{F} \leftarrow \overrightarrow{ }$
(1) Estimate $\sqrt{54}$ to the nearest whole number.
A. 6
B. 7
C. 8
D. 9

トヶ

Two-Dimensional Figures

Five-Minute CHECK (over Chapter 9)

(2) Order $3.131313 \ldots, \sqrt{10}, 3 \frac{1}{3}, \sqrt{9}$ from least to greatest.
A. $\sqrt{9}, \sqrt{10}, 3.131313 \ldots, 3 \frac{1}{3}$
B. $\sqrt{9}, 3.131313 \ldots, 3 \frac{1}{3}, \sqrt{10}$
C. $\sqrt{9}, 3.131313 \ldots, \sqrt{10}, 3 \frac{1}{3}$
D. $\sqrt{9}, 3 \frac{1}{3}, 3.131313 \ldots, \sqrt{10}$

Two-Dimensional Figures

Five-Minute CHECK (over Chapter 9)
(3) If c is the measure of the hypotenuse and $a=6$ and $b=9$, find the measure of c. Round to the nearest tenth, if necessary.
A. 10.5 units
0%
B. 10.6 units
C. 10.7 units
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 10.8 units

88/CheckPoint
$1 F \leftarrow \rightarrow$

Two-Dimensional Figures

Five-Minute CHECK (over Chapter 9)
(4) Find the distance between $A(-3,4)$ and $B(5,2)$ to the nearest tenth. Then find the coordinates of the midpoint of $\overline{A B}$.
(A.) 8.2 units; $(1,3)$
B. 8.2 units; $(4,1)$
C. 7.7 units; $(3,1)$
D. 7.7 units; $(1,4)$

Two-Dimensional Figures
 Prvo-Minute CHECK (over Chapter 9)

Standardized Test Practice
(5) In the figure, triangle $A B C$ is isosceles. What is the measure of angle B ?

A. 35°
0\%
B. 70°
(C. 110°
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 145°

Two-Dimensional Figures

0 Five-Minute CHECK (over Lesson 10-1)

(1) In the figure, $a \| b$ and t is a transversal. If $m \angle 3=37^{\circ}$, find $m \angle 8$.
A. 37°

B. 53°
C. 127°
(D. 143°

Two-Dimensional Figures

C) Fivo-Minuite CHIECK (over Lesson 10-1)

(2) In the figure, $a \| b$ and t is a transversal. If $m \angle 3=37^{\circ}$, find $m \angle 7$.
(A.) 37°

B. 53°

0\%
C. 127°
D. 143°

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-1)
(3) If $\angle A$ and $\angle B$ are supplementary, $m \angle A=3 x-7$, and $m \angle B=2 x-3$, what is the measure of each angle?
A. $m \angle A=121^{\circ} ; m \angle B=59^{\circ}$

0\%
B. $m \angle A=101^{\circ} ; m \angle B=79^{\circ}$
C. $m \angle A=117^{\circ} ; m \angle B=63^{\circ}$
(D. $m \angle A=107^{\circ} ; m \angle B=73^{\circ}$

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-1)
(4) A ladder is leaning against a house. The ladder meets the house at an angle that is complementary to 32°. At what angle does the ladder meet the house?
A. 32°
(B.) 58°
C. 68°
D. 148°

 \title{
Two-Dimensional Figures
}
 \title{
Two-Dimensional Figures
}

Five-Minate CHECK (over Lesson 10-1)

Standardized Test Practice

(5) Refer to the figure. If $\overline{A B} \| \overline{C D}$ and $\overline{B C} \| \overline{A D}$, find $m \angle A$. A. 35°

B. 70°
C. 75°
D. 85°
$\square A \square B \square C \square D$
$1+\leftarrow \Rightarrow$

Two-Dimensional Figures

C) Fivo-Minute CHECK (over Lesson 10-2)

(1)
Name the corresponding parts for the pair of congruent triangles shown in the figure. Then complete the congruence statement: $\triangle A C B$ is
 congruent to \qquad .
A. $\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F, \overline{A B}=\overline{D E}$,

$$
\overline{B C}=\overline{E F}, \overline{C A}=\overline{F D}, \triangle A C B \cong \triangle D F E
$$

B. $\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F, \overline{A B}=\overline{F D}$,

$$
\overline{B C}=\overline{D E}, \overline{C A}=\overline{E F}, \triangle A C B \cong \triangle D F E
$$

C. $\angle A \cong \angle F, \angle B \cong \angle D, \angle C \cong \angle E, \overline{A B}=\overline{D E}$,

$$
\overline{B C}=\overline{E F}, \overline{C A}=\overline{F D}, \triangle A C B \cong \triangle D E F
$$

D. $\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F, \overline{A B}=\overline{D E}$,

$$
\overline{B C}=\overline{E F}, \overline{C A}=\overline{F D}, \triangle A C B \cong \triangle D E F
$$

(2) If $\triangle P N O \cong \triangle K M L$, then $\angle N \cong$?
A. $\angle O$
B. $\angle L$

0\%

(C.) $\angle M$
D. $\angle K$
(3) If $\triangle P N O \cong \triangle K M L$, then $\overline{L K} \cong$?

A. $\overline{O N}$

(B. $\overline{\mathbf{O P}}$

0\%
C. $\overline{\mathrm{NO}}$
D. $\overline{N P}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
88/CheckPoint
FHF

Standardized Test Practice

(4) Which of the following must be true if
$\triangle P P Q R \cong \triangle K L M$?
(A.) $\angle Q \cong \angle L$
B. $\overline{L K}=\overline{R P}$
C. $\overline{Q R}=\overline{K M}$
D. $\angle R Q P \cong \angle L M K$

$88 /$ CheckPoint
LHF

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-3)

(1) Triangle $X Y Z$ has vertices $X(-3,1), Y(0,-2)$, and $Z(4,3)$. Find the coordinates of the vertices after a translation 2 units right and 3 units down.
A. $\quad X^{\prime}(-5,4), Y^{\prime}(-2,1)$, and $Z^{\prime}(2,6)$
B. $X^{\prime}(-5,-2), Y^{\prime}(-2,-5)$, and $Z^{\prime}(2,0)$
C. $X^{\prime}(-1,4), Y^{\prime}(2,1)$, and $Z^{\prime}(6,6)$
(D.) $X^{\prime}(-1,-2), Y^{\prime}(2,-5)$, and $Z^{\prime}(6,0)$

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-3)
(2) Triangle $E F G$ has vertices $E(3,1), F(0,5)$ and $G(-4,3)$. Find the coordinates of the vertices after a reflection over the x-axis.
A. $E^{\prime}(3,-1), F^{\prime}(0,-5)$, and $G^{\prime}(4,3)$
B. $E^{\prime}(3,-1), F^{\prime}(0,-5)$, and $G^{\prime}(-4,-3)$
C. $E^{\prime}(-3,-1), F^{\prime}(0,-5)$, and $G^{\prime}(-4,-3)$
D. $E^{\prime}(3,-1), F^{\prime}(0,5)$, and $G^{\prime}(-4,-3)$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
$88 /$ CheckPoint

Two-Dimensional Figures

Five-Mincute CHECK (over Lesson 10-3)

(3) The vertices of the figure $A B C D$ are $A(-1,-2)$, $B(-4,0), C(-3,-5)$, and $D(-5,-3)$. Find the coordinates of the vertices of the figure after a reflection over the y-axis.
A. $A^{\prime}(-2,1), B^{\prime}(0,4)$,
$C(-5,3)$, and $D^{\prime}(-3,5)$
B. $A^{\prime}(-2,-1), B^{\prime}(0,4)$,
$C(-5,3)$, and $D^{\prime}(3,5)$
C. $A^{\prime}(1,-2), B^{\prime}(4,0)$,
$C(3,-5)$, and $D^{\prime}(5,-3)$
D. $A^{\prime}(-1,2), B^{\prime}(-4,0)$,
$C^{\prime}(-3,5)$, and $D^{(}(-5,3)$

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-3)

(4) The vertices of $\triangle X Y Z$ are $X(-1,-2), Y(-4,0)$, and $Z(-3,-5)$. The vertices of $\triangle X Y Z$ after a translation are $X(-4,-1), Y(-7,1)$, and $Z(-6,-4)$. Write the translation as an ordered pair.
A. $(-3,-1)$
B. $(3,1)$
C. $(-3,1)$
D. $(3,-1)$

Two-Dimensional Figures
 C) Fivo-Minute CHECK (over Lesson 10-3)

Standardized Test Practice

(5) If $\triangle D E F$ in the figure is reflected over the y-axis, in which quadrant will the image of $\triangle D E F$ be?

A. I
(B.) II
C. III
D. IV

Two-Dimensional Figures
 Che-MinMie CHECK (over Lesson 10-4)

(1) Refer to the figure. Find the value of x.
A. 75

B. 105
(C. 126
D. 276

$8 / 8 /$ heckPoint
$1 \lll \gg$

Two-Dimensional Figures

Five=Minute CHECK (over Lesson 10-4)
(2) Refer to the figure. Find the value of x and the missing angle numbers.
(A.) $x=40 ; 40^{\circ} ; 80^{\circ}$

B. $x=28 ; 28^{\circ} ; 56^{\circ}$

0\%

C. $x=20 ; 20^{\circ} ; 40^{\circ}$
D. $x=50 ; 50^{\circ} ; 100^{\circ}$
$1 F \leftarrow \rightarrow$

Two-Dimensional Figures

C) Fivo-Minute CHECK (over Lesson 10-4)
(3) Classify the quadrilateral in the figure using the name that best describes it.

A. kite
(B.) parallelogram
C. rectangle
D. rhombus

Two-Dimensional Figures

Chervo-Minuite CHECK (over Lesson 10-4)
(4) Classify the quadrilateral in the figure using the name that best describes it.
A. kite

B. parallelogram
C. rectangle
D. rhombus

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-4)

Standardized Test Practice

(5) Which statement is not true?
A. A trapezoid is a quadrilateral.
B. A rhombus is a square.
C. A square is a rectangle.
D. A rectangle is a parallelogram.

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-5)

(1) Classify the polygon and then determine whether it appears to be regular or not regular.
(A.) hexagon; regular

B. pentagon; regular
C. heptagon; not regular
D. octagon; not regular

Two-Dimensional Figures
C) Fivo-Minute CHECK (over Lesson 10-5)
(2) Classify the polygon and then determine whether it appears to be regular or not regular.
A. heptagon; regular

B. octagon; regular
C. pentagon; not regular
D. hexagon; not regular

Two-Dimensional Figures

C) Fivo-Minute CHECK (over Lesson 10-5)
(3) Find the measure of each interior angle of a regular hexagon.
A. 108°

0\%
(B. 120°
C. 540°
D. 720°

Two-Dimensional Figures

Five=Minute CHECK (over Lesson 10-5)
(4) The base of a light fixture is in the shape of an octagon. Each side of the base is 4.5 inches. What is the perimeter of the base?
A. 22.5 in .
B. 27 in.
C. 31.5 in .

D. 36 in .
$88 /$ CheckPoint
$1 F \leftarrow \rightarrow$

Standardized Test Practice

(5) An interior angle of a regular polygon has a measure of 140°. How many sides does the polygon have?
A. 6
B. 7
(C.) 9
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 12

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-6)

(1) Find the area of the figure.

$6 \frac{2}{3} \mathrm{ft}$
B. $\mathbf{2 4} \mathbf{f t}^{\mathbf{2}}$
C. $30 \mathrm{ft}^{2}$
D. $42 \mathbf{f t}^{\mathbf{2}}$

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-6)
(2) Find the area of the figure.
A. $18.1 \mathrm{in}^{\mathbf{2}}$
(B. $\mathbf{3 5 . 6 7} \mathrm{in}^{2}$

C. $71.34 \mathrm{in}^{2}$

0\%

Two-Dimensional Figures

C) Fivo-Minute CHECK (over Lesson 10-6)
(3) Find the area of a triangle with base 2.6 km and height 4 km .
(A. $\mathbf{5 . 2} \mathrm{km}^{2}$
0%
B. 6.2 km 2
C. $10.4 \mathrm{~km}^{2}$
D. $20.8 \mathrm{~km}^{2}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
$88 /$ CheckPoint
FHF

Two-Dimensional Figures

C) Fivo-Minute CHECK (over Lesson 10-6)
(4) The area of a college basketball court is 4200 square feet. The width of the court is 50 feet. What is the length of the court?
A. 42 ft
(B.) 84 ft
C. 168 ft
D. 2050 ft

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-6)
Standardized Test Practice
(5) What is the area of the figure?

A. $120 \mathrm{in}^{2}$

B. $\mathbf{1 6 5} \mathbf{i n}^{2}$

15 in.
C. $180 \mathrm{in}^{2}$
D. $360 \mathrm{in}^{2}$

FFF

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-7)
(1) Find the circumference and area of the circle in the figure to the nearest tenth.
A. 25.1 in., 201.1 in 2

B. 25.1 in., 78.9 in 2
C. 50.3 in., $201.1 \mathrm{in}^{2}$
D. 50.3 in., 78.9 in 2

Two-Dimensional Figures

Prvo-Minute CHECK (over Lesson 10-7)
(2) Find the circumference and area of the circle in the figure to the nearest tenth.
A. $56.5 \mathrm{~cm}, 254.5 \mathrm{~cm}^{2}$

(B. $\mathbf{2 8 . 3 ~ c m}, 63.6 \mathrm{~cm}^{2}$

0\%
C. $56.5 \mathrm{~cm}, 63.6 \mathrm{~cm}^{2}$
D. $28.3 \mathrm{~cm}, 254.5 \mathrm{~cm}^{2}$

Two-Dimensional Figures

Chervo-Minuite CHIECK (over Lesson 10-7)
(3) The diameter of a circle is 5.7 feet. Find the circumference and area to the nearest tenth.
(A.) $\mathbf{1 7 . 9} \mathbf{f t}, \mathbf{2 5 . 5} \mathbf{f t}^{\mathbf{2}}$

0\%
B. $\quad 35.8 \mathrm{ft}, 102.1 \mathbf{~ t t}^{\mathbf{2}}$
C. $\mathbf{1 7 . 9 ~ f t , ~} \mathbf{1 0 2 . 1} \mathbf{~ t t}^{\mathbf{2}}$
D. $25.5 \mathrm{ft}, 35.8 \mathrm{ft}^{\mathbf{2}}$

Two-Dimensional Figures

Chervo-Minute CHECK (over Lesson 10-7)
(4) The diameter of the lid of a coffee can lid is 3.25 inches. What is the circumference of the lid to the nearest tenth?
A. 1.02 in .
B. 5.1 in.
(C.) 10.2 in .

D. 20.4 in.

Two-Dimensional Figures

Five-Minute CHECK (over Lesson 10-7)

Standardized Test Practice

(5) A circle with a radius of 1 foot is to be cut from a square of plywood that is 2 feet on each side. What will be the approximate area of the remaining board?

A. $\mathbf{4 f t}{ }^{\mathbf{2}}$

B. $3.14 \mathrm{ft}^{2}$
C. $7.14 \mathrm{ft}^{2}$
(D. $0.86 \mathrm{ft}^{2}$

