Interactive Classroom

Chapter 11 Three-Dimensional Figures

Click the mouse button or press the space bar to continue.

edra

Copyright © by The McGraw-Hill Companies, Inc.

Chapter Menu

Lesson 11-1 Three-Dimensional Figures

Lesson 11-2 Volume: Prisms and Cylinders

Lesson 11-3 Volume: Pyramids, Cones, and Spheres

Lesson 11-4 Surface Area: Prisms and Cylinders

Lesson 11-5 Surface Area: Pyramids and Cones

Lesson 11-6 Similar Solids

Lesson Menu

1-1

Five-Minute Check (over Chapter 10)

Main Ideas and Vocabulary

Concept Summary: Polyhedrons

Example 1: Identify Solids

Example 2: Real-World Example

Main Ideas

-

- Identify three-dimensional figures.
- Draw various views of three-dimensional figures.

New Vocabulary

- plane
- solid
- polyhedron
- edge
- vertex
- face

- prism
- base
- pyramid
- cylinder

Chapter RESOURCES

cone

CONCEPT SUMMARY Polyhedrons							
Polyhedron	triangular rectangular triangular prism prism pyramid		triangular pyramid	rectangular pyramid			
Number of Bases	2 2		1	1			
Polygon Base	triangle	rectangle	triangle	rectangle			
Figure							

Math nline

EXAMPLE Identify Solids

A. Identify the solid. Name the bases, faces, edges, and vertices.

Answer: This figure has two parallel congruent bases that are rectangles, *GHJK* and *LMNP*, so it is a rectangular prism.

Chapter RESOURCES

faces: GHJK, LMNP, GHML, HJNM, JKPN, GKPL

edges: \overline{GH} , \overline{HJ} , \overline{JK} , \overline{GK} , \overline{LM} , \overline{MN} ,

 \overline{NP} , \overline{LP} , \overline{GL} , \overline{HM} , \overline{JN} , \overline{KP}

vertices: G, H, J, K, L, M, N, P

EXAMPLE Identify Solids

B. Identify the solid. Name the bases, faces, edges, and vertices.

Answer: This figure has one triangular base, *DEF*, so it is a triangular pyramid.

faces: DEF, DEG, DFG, EFG edges: \overline{DE} , \overline{DF} , \overline{DG} , \overline{EF} , \overline{EG} , \overline{FG} vertices: D, E, F, G

EXAMPLE Identify Solids

C. Identify the solid. Name the bases, faces, edges, and vertices.

Answer: The solid has two parallel circular bases. So, it is a cylinder: bases *A* and *B*.

A. Identify the solid.
 Name the bases, faces, edges, and vertices.

HECK Your Progress

SOURCES

rectangular pyramid; base: *BCDE*; faces: *ABC*, *ACD*, *ADE*, *AEB*, *BCDE*; edges: \overline{AB} , \overline{AC} , \overline{AD} , \overline{AE} , \overline{BC} , \overline{CD} , \overline{DE} , \overline{EB} ; vertices: *A*, *B*, *C*, *D*, *E*

- B. rectangular pyramid; base: BCDE; faces: ABC, ACD, ADE, AEB, BCDE; edges: AB, AC, AD, AE, BC, CD, DE, EB; vertices: A, B, C, D, E
- **C.** triangular pyramid; base: *BCDE*; faces: *ABC*, *ACD*, *ADE*, *AEB*; edges: \overline{AB} , \overline{AC} , \overline{AD} , \overline{AE} ; vertices: *A*, *B*, *C*, *D*, *E*
- **D.** rectangular pyramid; base: *BCDE*; faces: *ABC*, *ACD*, *ADE*, *AEB*; edges: \overline{AB} , \overline{AC} , \overline{AD} , \overline{AE} ; vertices: *A*, *B*, *C*, *D*, *E*

rectangular pyramid; bases: GHJK,LMNP; faces: GHJK,LMNP,GHML,HJNM,JKPN,GKPL; Α. edges: GH,HJ,JK,GK,LM,MN,NP,LP,GL,HM,JN,KP; vertices: G,H,J,K,L,M,N,P

- Β. rectangular prism; bases: GHJK,LMNP; faces: GHML,HJNM,JKPN,GKPL; edges: GH,HJ,JK,GK,MN,NP,LP,LM; vertices: G,H,J,K,L,M,N,P
- C. triangular prism; bases: GHJK,LMNP; faces: GHML,HJNM,JKPN,GKPL;

edges: GH,HJ,JK,GK,MN,NP,LP,LM; vertices: G,H,J,K,L,M,N,P rectangular prism; bases: GHJK,LMNP; faces: GHJK,LMNP,GHML,HJNM,JKPN,GKPL; edges: GH, HJ, JK, GK, LM, MN, NP, LP, GL, HM, JN, KP; vertices: G, H, J, K, L, M, N, P

Chanter

RESOURCES

HECK Your Progress

C. Identify the solid. Name the bases, faces, edges, and vertices.

RESOURCES

A. triangular pyramid; bases: ABC, DEF; faces: ABC, ABED, ACFD, BCFE, DEF; edges: AB, AC, AD, BC, BE, CF, DE, DF, EF; vertices: A, B, C, D, E, F
B. triangular prism; bases: ABC, DEF; faces: ABC, ABED, ACFD, BCFE, DEF;

edges: \overline{AB} , \overline{AC} , \overline{AD} , \overline{BC} , \overline{BE} , \overline{CF} , \overline{DE} , \overline{DF} , \overline{EF} ; vertices: A, B, C, D, E, F

- **C.** rectangular prism; bases: *ABC*, *DEF*; faces: *ABC*, *ABED*, *ACFD*, *BCFE*, *DEF*; edges: \overline{AB} , \overline{AC} , \overline{BC} , \overline{DE} , \overline{EF} ; vertices: *A*, *B*, *C*, *D*, *E*, *F*
- D. triangular prism; bases: ABC, DEF; faces: ABED, ACFD, BCFE; edges: AB, AC, BC, DE, DF, EF; vertices: A, B, C, D, E, F

Real-World EXAMPLE

A. ARCHITECTURE An architect's sketch shows the plans for a new skyscraper. Each unit on the drawing represents 80 feet. Draw a top view and find the area of the ground floor.

The drawing is two rectangles, a 4×6 and a 2×1 , so the actual dimensions are $4(80) \times 6(80)$ and $2(80) \times 1(80)$ or 320 feet \times 480 feet and 160 feet \times 80 feet.

RESOURCES

Define the area, add the areas of the two rectangles. $A = 320 \bullet 480 + 160 \bullet 80 \text{ or } 166,400 \text{ ft}^2$

Answer: The area of the ground floor is 166,400 square feet.

Real-World EXAMPLE

B. Draw a top-count view of the building.

Using the top view from part A, write the number of levels for each unit of the building.

Answer:

Real-World EXAMPLE

C. How many floors are in the skyscraper if each floor is 16 feet high?

You can see from the side view and top-count view that the height of the building is 7 units.

RESOURCES

Answer: 35 floors

CHECK Your Progress

• A. ARCHITECTURE An architect's sketch shows the plans for a new office building. Find the area of the ground floor if each unit represents 75 feet.

C. 90,000 ft²

D. 202,500 ft²

CHECK Your Progress

B. ARCHITECTURE An architect's sketch shows the plans for a new office building. Draw a top-count view of the building.

A.)	2	2	2	2	2	2
	2	2	3	3	3	2
	2	2	3	3	3	2
	2	2	2	2	2	2
	0	0	0	0	0	0

C. ARCHITECTURE An architect's sketch shows the plans for a new office building. How many floors are in the office building if each floor is 15 feet high?

- A. 3 floors
- **B.** 10 floors
- C, 15 floors
- D. 25 floors

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 11-1)

Main Ideas and Vocabulary

Key Concept: Volume of a Prism

Example 1: Volume of a Rectangular Prism

Example 2: Volume of a Triangular Prism

Example 3: Real-World Example

Example 4: Standardized Test Example

Chapter RESOURCES

Key Concept: Volume of a Cylinder

Example 5: Volume of a Cylinder

Main Ideas

- Find volumes of prisms.
- Find volumes of circular cylinders.

Chapter RESOURCES

New Vocabulary

• volume

11-2 Volume: Prisms and Cylinders

KEY CONCEPT

Words The volume V of a prism is the area of the base B times the height h.

Symbols V = Bh

EXAMPLE Volume of a Rectangular Prism

Find the volume of the prism.

V = Bh

8 cm Formula for volume of a prism

16 cm

- $V = (\ell \bullet w)h$ The base is a rectangle, so $B = \ell \bullet w$.
- $V = (25 \bullet 16)8$
- $\ell = 25, w = 16, h = 8$
- V = 3200 Simplify.

Answer: The volume is 3200 cubic centimeters.

25 cm

EXAMPLE Volume of a Triangular Prism

Pind the volume of the triangular prism.

V = Bh

Formula for volume of a prism

$$V = \left(\frac{1}{2} \bullet 2 \bullet 5\right)h$$

$$B =$$
area of base or $\frac{1}{2} \bullet 2 \bullet 5$

$$V = \left(\frac{1}{2} \bullet 2 \bullet 5\right) 3$$

The height of the prism is 3 in.

Chapter RESOURCES 5 in.

2 in.

3 in.

V = 15 Simplify.

Answer: The answer is 15 cubic inches.

Real-World EXAMPLE

- **BAKING** Cake batter is poured into a pan that is a rectangular prism whose base is an 8-inch square. If the cake batter occupies 192 cubic inches, what will be the height of the batter?
 - V = BhFormula for volume of a prism
 - $V = \ell \bullet w \bullet h$ Replace *B* with $\ell \bullet w$.
 - $192 = 8 \bullet 8 \bullet h$ Replace V with 192, *l* with 8, and w with 8.

Chapter RESOURCES

- 192 = 64hSimplify.
 - 3 = hDivide each side by 64.

Answer: The height of the batter is 3 inches.

11-2 Volume: Prisms and Cylinders

3 SWIMMING POOLS A swimming pool is filled with 960 cubic feet of water. The pool is a rectangular prism 20 feet long and 12 feet wide and is the same depth throughout. Find the depth of the water.

A. 2 feet

C. 8 feet

D. 30 feet

■ A ■ B ■ C ■ D

Chapter RESOURCES

0%

Standardized Test EXAMPLE

Find the volume of the solid.

A 262 m³ **B** 972 m³ **C** 918 m³ **D** 1458 m³

Read the Test Item

The solid is made up of a rectangular prism and a triangular prism. The volume of the solid is the sum of both volumes.

Solve

V(solid) = V(rectangular prism) + V(triangular prism)

Standardized Test EXAMPLE

 $V(solid) = \ell \bullet w \bullet h + Bh$

4

$$= 12 \bullet 9 \bullet 9 + \left(\frac{1}{2} \bullet 9 \bullet 9\right) \bullet 12$$

Volume formulas

Substitute.

 $= 972 + 486 \text{ or } 1458 \text{m}^3$

Simplify.

Chapter RESOURCES

Answer: The answer is D.

11-2 Volume: Prisms and Cylinders

KEY CONCEPTVolume of a CylinderWordsThe volume V of a cylinder
with radius r is the area of the
base B times the height h.ModelSymbolsV = Bh, where $B = \pi r^2$ or
 $V = \pi r^2 h$ h

Chapter RESOURCES

Volume: Prisms and Cylinders

EXAMPLE Volume of a Cylinder

A. Find the volume of the cylinder. Round to the nearest tenth.

Estimate $3 \bullet 7^2 \bullet 14 = 2058$

Formula for volume V = Bh $V = \pi r^2 h$ Replace *B* with πr^2 .

Chapter RESOURCES

7 ft

 $V = \pi \bullet 7^2 \bullet 14$ Replace *r* with 7 and *h* with 14. $V \approx 2155.1$ Compare to the estimate.

Answer: The volume is about 2155.1 cubic feet.

EXAMPLE Volume of a Cylinder

B. Find the volume of the cylinder. Round to the nearest tenth. diameter of base 10 m, height 2 m

Since the diameter is 10 m, the radius is 5 m.

 $V = \pi r^2 h$ Formula for volume of a cylinder $V = \pi \bullet 5^2 \bullet 2$ Replace r with 5 and h with 2. $V \approx 157.1$ Simplify.

Answer: The volume is about 157.1 cubic meters.

A. 1206.4 cm³

- **C.** 226.2 cm³
- **D.** 150.8 cm³

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 11-2)

Main Ideas and Vocabulary

Key Concept: Volume of a Pyramid

Example 1: Volume of a Pyramid

Key Concept: Volume of a Cone

Example 2: Volume of a Cone

Key Concept: Volume of a Sphere

Example 3: Volume of a Sphere

Example 4: Real-World Example

Main Ideas

- Find volumes of pyramids.
- Find volumes of cones and spheres.

Chapter RESOURCES

New Vocabulary

• sphere

EXAMPLE Volume of a Pyramid

Find the volume of the pyramid. Round to the nearest tenth if necessary.

$$V = \frac{1}{3}Bh$$

$$V=\frac{1}{3}(15\bullet 15)h$$

 $V = \frac{1}{3} (15 \bullet 15) 12$

V = 900

Formula for volume of a pyramid

- The base is a square, so $B = 15 \bullet 15$.
- The height of the pyramid is 12 inches.

Chapter RESOURCES

12 in.

15 in.

15 in.

Simplify.

Answer: The volume is 900 cubic inches.

Find the volume of the pyramid. Round to the nearest tenth if necessary.

- **B.** 168 in³
- **C.** 336 in³
- **D.** 448 in³

EXAMPLE Volume of a Cone

Pind the volume of the cone. Round to the nearest tenth.

$$V=\frac{1}{3}\pi r^2 h$$

 $V \approx 253.4$

Formula for volume of a cone

$$V = \frac{1}{3} \bullet \left(5 \bullet 5\right)^2 \bullet 8$$

Replace *r* with 5.5 and *h* with 8.

Chapter RESOURCES 8 m

~5.5 m

Simplify.

Answer: The volume is about 253.4 cubic meters.

EXAMPLE Volume of a Sphere

Find the volume of the sphere. Round to the nearest tenth.

Formula for the volume of a sphere

Chapter RESOURCES

 $=\frac{4}{3}\bullet\pi\bullet5^{3}$

Replace r with 5.

 \approx 523.6 ft³ Simplify.

Answer: The volume of the sphere is about 523.6 cubic feet.

A. LANDSCAPING When mulch was dumped from a truck, it formed a cone-shaped mound with a diameter of 15 feet and a height of 8 feet. What is the volume of the mulch?

Estimate
$$\frac{1}{3} \bullet 3 \bullet 8^2 \bullet 8 = 512$$

$$V = \frac{1}{3}\pi r^2 h$$
$$V = \frac{1}{3} \bullet \pi \bullet (7.5)^2 \bullet 8$$

 $V \approx 471$

Formula for the volume of a cone

Since d = 15, replace *r* with 7.5. Replace *h* with 8.

Simplify.

4 **Answer:** The volume of the mulch is about 471 cubic feet.

B. LANDSCAPING When mulch was dumped from a truck, it formed a cone-shaped mound with a diameter of 15 feet and a height of 8 feet. A person shoveling the mulch removes it at a rate of 1.5 ft³ every minute. How long does it take for the pile of mulch to be completely removed?

To determine how long it takes for the pile of mulch to be completely removed, divide the volume of the pile of mulch by the rate of removal.

$$\frac{471 \, \text{ft}^3}{1.5 \, \frac{\text{ft}^3}{\text{min}}} = 314 \, \text{min}$$

4 314 min •
$$\frac{1 \text{ hr}}{60 \text{ min}} = 5.2 \text{ hrs}$$

Answer: It will take about 5.2 hours for the pile of mulch to be completely removed.

CHECK Your Progress

- A. PLAYGROUND A load of wood chips for a playground was dumped and formed a cone-shaped mound with a diameter of 10 feet and a height of 6 feet. What is the volume of the wood chips? Round to the nearest tenth.
 - A. 628.3 ft³
 - **B.** 471.2 ft³
 - **C.** 377.0 ft³

HECK Your Progress

B. PLAYGROUND A load of wood chips for a playground was dumped and formed a cone-shaped mound with a diameter of 10 feet and a height of 6 feet. A person shoveling the wood chips removes them at a rate of 2 ft³ every minute. How long does it take for the load of wood chips to be completely removed?

1.3 hours

- **B.** 3.1 hours
- **C.** 3.9 hours
- **D.** 5.2 hours

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 11-3)

Main Ideas and Vocabulary

Key Concept: Lateral Area and Surface Area of Prisms

Example 1: Surface Area of Prisms

Key Concept: Lateral Area and Surface Area of Cylinders

> Chapter RESOURCES

Example 2: Surface Area of a Cylinder

Example 3: Real-World Example

Main Ideas

- Find lateral area and surface areas of prisms.
- Find lateral area and surface areas of cylinders.

Chapter RESOURCES

New Vocabulary

- net
- lateral face
- lateral area
- surface area

KEY CC	NCEPT Late	eral Area and Surface Area of Prisms
Words Symbols	The lateral area <i>L</i> of a prism is the perimeter of the base <i>P</i> times the height <i>h</i> . L = Ph	Model Area of Base (B) Area of Base (B) ℓ
Words	The surface area <i>S</i> of a prism is the lateral area <i>L</i> plus the area of the two bases 2 <i>B</i> .	Area of Base (B)
Symbols	S = L + 2B or $S = Ph + 2B$	Area of Base (B)

Math nline

EXAMPLE Surface Area of Prisms

A. Find the lateral area and surface area of the prism.

Find the lateral area

- L = Ph
 - $= (2\ell + 2w)(h)$
 - $= (2 \bullet 34 + 2 \bullet 21)(4)$
 - $= 440 \text{ cm}^2$

21 cm Find the surface area 34 cm

4 cm

$$S = L + 2B$$

 $= L + 2\ell w$

$$= 440 + 2(34)(21)$$

Chapter RESOURCES

 $= 1868 \text{ cm}^2$

Answer: The lateral area is 440 square centimeters. The surface area is 1868 square centimeters.

Surface Area: Prisms and Cylinders

EXAMPLE Surface Area of Prisms

B. Find the lateral area and surface area of the prism.

The lateral area is made up of bases that are *not* parallel.

L = Ph

 $= 144 \text{ m}^2$

= (12 + 16 + 20)(3)

16 m 12 m 20 m 3 m

Write the formula.

P is perimeter of the triangular base. *h* is the height of the prism.

Simplify.

EXAMPLE Surface Area of Prisms

Find the surface area. S = L + 2B $= L + 2\left(\frac{1}{2}bh\right)$ $= 144 + 2\left(\frac{1}{2} \cdot 12 \cdot 16\right)$ $= 336 \text{ m}^2$

Write the formula. $B = \frac{1}{2}bh$ (area of triangle)

Substitution.

Chapter RESOURCES

Simplify.

Answer: The lateral area of the triangular prism is 144 square meters. The surface area of the triangular prism is 336 square meters.

A. Find the lateral area and the surface area of the rectangular prism.

A. lateral area, 152 in²; surface area, 292 in²

HECK Your Progress

- **B.** lateral area, 182 in²; surface area, 322 in²
 - Iateral area, 304 in²; surface area, 444 in²
- D. lateral area, 364 in²; surface area, 560 in²

B. Find the lateral area and the surface area of the triangular prism.

A. lateral area, 19 ft²; surface area, 31 ft²

HECK Your Progress

- **B.** lateral area, 61 ft²; surface area, 96 ft²
 - Iateral area, 84 ft²; surface area, 96 ft²
- D. lateral area, 96 ft²; surface area, 108 ft²

KEY CONCEPT

Lateral Area and Surface Area of Cylinders

Words The lateral area *L* of a cylinder with radius *r* and height *h* is the circumference of the base $(2\pi r)$ times the height *h*.

Symbols $L = 2\pi rh$

- **Words** The surface area *S* of a cylinder is the lateral area *L* plus the area of the two bases $(2\pi r^2)$.
- **Symbols** S = L + 2B or $S = 2\pi rh + 2\pi r^2$

Surface Area: Prisms and Cylinders

EXAMPLE Surface Area of a Cylinder

Find the lateral area and surface area of the cylinder. Round to the nearest tenth.

Estimate $(2 \bullet 3 \bullet 5 \bullet 8) + (2 \bullet 5 \bullet 5^2)$ or 390 m^2

Find the lateral area

- $L = 2\pi rh$
 - $= 2\pi(5)(8)$
 - $= 80\pi$
 - $\approx 251.3 \text{ m}^2$

exact answer approximate answer

EXAMPLE Surface Area of a Cylinder

- Find the surface area.
 - $S = L + 2\pi r^2$
 - $= 80\pi + 2\pi(5)^2$
 - $= 130\pi$ exact answer
 - $= 408.4 \text{ m}^2$ approximate answer

How does your estimate compare to your answer?

Answer: The lateral area is about 251.3 square inches and the surface area is about 408.4 square inches.

HECK Your Progress

Find the lateral area and the surface area of the cylinder. Round to the nearest tenth.

- Iateral area, 1082.0 in²; surface area, 1504.4 in²
- B. lateral area, 1082.0 in²; surface area, 3852.9 in²
- C. lateral area, 2163.9 in²; surface area, 2586.4 in²
- D. lateral area, 4436.1 in²; surface area, 4858.6 in²

RESOURCES

3 CEREALS A company packages its cereal in a rectangular prism that is 2.5 inches by 7 inches by 12 inches. It is considering packaging it in a cylinder-shaped container having a 6-inch diameter and a height of 7.5 inches. Which uses the least amount of packaging?

Chapter RESOURCES

Surface Area of Rectangular Prism Style

= 263 in²

Surface Area of Cylinder Style 3

- Lateral Area Area of Bases S =2B+ $2\pi r^2$ $2\pi rh$ +
 - $2\pi(3)^2$ $2\pi(3)(7.5)$ + =
 - = 197.9 in²

Answer: Since 197.9 in² < 263 in², the cylinder uses less packaging.

CHECK Your Progress

CANDY A candy company is deciding between two types of packaging for its gumballs. The first option is a rectangular prism that is 6 inches by 4 inches by 1.5 inches. The second option is a cylinder having a radius of 2 inches and a height of 5 inches. Which option requires less packaging?

- The rectangular prism requires less packaging.
- **B.** The cylinder requires less packaging.
- C. Both options require the same amount of packaging.
- **D.** cannot be determined

SOURCES

0%

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 11-4)

Main Ideas and Vocabulary

Example 1: Surface Area of a Pyramid

Example 2: Real-World Example

Key Concept: Surface Area of a Cone

Example 3: Surface Area of a Cone

Main Ideas

1-5

- Find surface areas of pyramids.
- Find surface areas of cones.

New Vocabulary

• slant height

EXAMPLE Surface Area of a Pyramid

Find the surface area of the square pyramid.

First find the lateral area. The lateral area of the pyramid is made up of four triangles.

Estimate
$$L = 4\left(\frac{1}{2}\right)(8)(9) = 144$$

$$L = 4\left(\frac{1}{2}\right)bh$$

 $= 142.4 \text{ ft}^2$

Area of 4 triangles

Chapter RESOURCES

 $=4\left(\frac{1}{2}\right)(8)(8.9)$ Replace *b* with 8 and *h* with 8.9.

Simplify.

EXAMPLE Surface Area of a Pyramid

Then find the surface area. The base of the pyramid is a square.

- S = L + B Write the formula.
 - $= L + s^2$ The area of a square is s^2 .
 - $= 142.4 + 8^2$ Substitution
 - = 206.4 ft^2 Simplify.

Is your answer reasonable?

Answer: The surface area of the square pyramid is 206.4 square feet.

Chapter RESOURCES

Real-World EXAMPLE

CANOPIES A canopy is in the shape of a square pyramid that is 3.4 meters on each side. The slant height is 2 meters. How much canvas is used for the canopy?

Find the lateral area only, since there is no bottom to the canopy.

Estimate
$$L = 4\left(\frac{1}{2}\right)(3)(2) = 12$$

 $L = 4\left(\frac{1}{2}\right)bh$

Formula for area of 4 triangles

Chapter RESOURCES

$$2 \quad = 4\left(\frac{1}{2}\right)(3.4)(2)$$

= 13.6

Replace *b* with 3.4 and *h* with 2.

Simplify.

Answer: 13.6 square meters of canvas was used to cover the canopy. Compare your answer to the estimate.

CHECK Your Progress

ZENT A tent is in the shape of a square pyramid that is 8 feet on each side. The slant height is 10 feet. Find the surface area of the tent.

A. 320 ft²

B. 224 ft²

D. 80 ft²

Chapter RESOURCES

0%

Chapter RESOURCES

EXAMPLE Surface Area of a Cone

Find the surface area of the cone. Round to the nearest tenth.

 $S = \pi r \ell + \pi r^2$

Formula for surface area of a cone

 $= \pi(3.5)(10) + \pi(3.5)^2$

Replace *r* with 3.5 and ℓ with 10.

Chapter RESOURCES

10 ft

3.5 ft

≈ 148.4

Simplify.

Answer: The surface area of the cone is about 148.4 square feet.

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

1-6

Five-Minute Check (over Lesson 11-5)

Main Ideas and Vocabulary

Example 1: Identify Similar Solids

Example 2: Find Missing Measures

Key Concept: Ratios of Similar Solids

Example 3: Find Surface Areas of Similar Solids

Chapter RESOURCES

Example 4: Real-World Example

Similar Solids

1-6

- Identify similar solids.
- Solve problems involving similar solids.

Chapter RESOURCES

New Vocabulary

similar solids

A. Determine whether the pair of solids is similar.

 $\frac{12}{7.5} \stackrel{?}{=} \frac{6}{4}$

Similar Solids

1-6

Write a proportion comparing radii and heights.

Chapter RESOURCES

- $12(4) \stackrel{?}{=} (7.5)(6)$ Find the cross products.
 - $48 \neq 45$ Simplify.

Answer: The radii and heights are not proportional, so the cylinders are not similar.

Similar Solids

1-6

EXAMPLE Identify Similar Solids

B. Determine whether the pair of solids is similar.

 $\frac{54}{9} \stackrel{?}{=} \frac{9}{1.5}$

Write a proportion comparing corresponding edge lengths.

Chapter RESOURCES

54(1.5)[?] = 9(9)

- Find the cross products.
- 81 = 81 Simplify.

Answer: The corresponding measures are proportional, so the pyramids are similar.

EXAMPLE Find Missing Measures

2 The cylinders to the right are similar. Find the radius of cylinder A.

Similar Solids

1-6

 $\frac{\text{radius of cylinder A}}{\text{radius of cylinder B}} = \frac{\text{height of cylinder A}}{\text{height of cylinder B}}$

$$\frac{x}{8} = \frac{4.5}{6}$$

6x = 8(4.5)

Substitute the known values.

Chapter RESOURCES

Find the cross products.

Answer: The radius of cylinder A is 6 centimeters.

x in.

6 in.

eckPoint

Similar Solids

1-6

EXAMPLE Find Surface Areas of Similar Solids

A cylinder has a surface area of 245 square inches. If the dimensions are doubled, what is the surface area of the new cylinder?

The cylinders are similar and the scale factor of

the side lengths
$$\frac{a}{b}$$
 is $\frac{1}{2}$.

Similar Solids

1-6

Therefore, surface areas of the rectangular prisms

hapter RESOURCES

have a ratio of $\left(\frac{a}{b}\right)^2$ or $\left(\frac{1}{2}\right)^2$.

EXAMPLE Find Surface Areas of Similar Solids

Set up a proportion to find the surface area of the new cylinder.

surface area of original cylinder _(

surface area of new cylinder

Similar Solids

1-6

$$\frac{der}{der} = \left(\frac{a}{b}\right)^2$$

Write a proportion.

$$\frac{245}{S} = \left(\frac{1}{2}\right)^2$$

Chapter RESOURCES

Substitute known values. Let S = the surface area of the new cylinder.

II-6 Similar Solids	
EXAMPLE Find Surface Areas of Similar Solids	
$\frac{245}{S} = \frac{1}{4}$	$\left(\frac{1}{2}\right)^2 = \frac{1}{2} \cdot \frac{1}{2}$ or $\frac{1}{4}$
$4 \bullet 245 = S \bullet 1$	Find the cross products.
980 = S	Multiply.

Answer: The surface area of the new cylinder is 980 square inches.

Chapter RESOURCES

- **B.** 392 cm²
- **C.** 588 cm²

Chapter RESOURCES

0%

Real-World EXAMPLE

DOLLHOUSE A small model of a fish tank for Eva's dollhouse is built on a scale of 1 cm to 5 in. and has a volume of 24 cm³. What is the volume of the actual fish tank?

Explore You know the scale factor $\frac{a}{b}$ is $\frac{1}{5}$ and the volume of the model fish tank is 24 cm³.

Chapter RESOURCES

The volume of the actual tank is 125 times the volume of the model.

Answer: The volume of the model is 125 • 24 cm³ or 3000 cubic centimeters.

Check Use estimation to check the reasonableness of this answer. $125 \bullet 20 = 2500$ and $125 \bullet 30 = 3,750$, so the answer must be between 2,500 and 3,750. The answer is 3,000 cm³ is reasonable.

RESOURCES

TRAINS A scale model of a railroad boxcar is built on a scale of 1 inch to 50 inches and has a volume of 72 cubic inches. What is the volume of the actual boxcar?

9,000,000 in³

- **B.** 373,248 in³
- **C.** 180,000in³
- **D.** 3,600 in³

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Three-Dimensional Figures

Chapter Resources Menu

CheckPoint Five-Minute Checks

Image Bank

C^Oncepts in **MOtion**

Anymation Volume of Pyramids, Cones, and Spheres

Surface Area of a Cylinder

Three-Dimensional Figures

Five-Minute CHECK

- Lesson 11-1
- Lesson 11-2
- Lesson 11-3
- Lesson 11-4
- Lesson 11-5
- Lesson 11-6

- (over Chapter 10)
 - (over Lesson 11-1)
 - (over Lesson 11-2)
 - (over Lesson 11-3)
 - (over Lesson 11-4)
 - (over Lesson 11-5)

Image Bank

To use the images that are on the following three slides in your own presentation:

- **1.** Exit this presentation.
- 2. Open a chapter presentation using a full installation of Microsoft[®] PowerPoint[®] in editing mode and scroll to the Image Bank slides.
- **3.** Select an image, copy it, and paste it into your presentation.

_ |✦– ✦– –

Three-Dimensional Figures

Concepts in Motion Animation

The vertices of figure WXYZ are W(2, 3), X(4, 5), Y(5, -1), and Z(1, -2). Find the coordinates of the image after a reflection over the y-axis.

A.
$$W'(-2, 3), X'(-4, 5), Y'(-5, -1), Z'(-1, -2)$$

B. $W'(-2, 3), X'(-4, 5), Y'(-5, 1), Z'(-1, -2)$
C. $W'(-2, 3), X'(-4, -5), Y'(-5, -1), Z'(-1, -2)$
D. $W'(2, 3), X'(-4, 5), Y'(5, -1), Z'(-1, -2)$

Find the area of a triangle with a base of 34 centimeters and a height of 19 centimeters.

A. 161.5 cm²

- **C.** 646 cm²
- **D.** 680 cm²

A round table has a diameter of 25 inches. What is the circumference of the table? Round to the nearest tenth.

A. 39.3 in.

C. 196.3 in.

🗖 A 🗖 B 🗖 C 🗖 D

- **6** The exterior angle at each vertex of a regular polygon measures 72°. What type of polygon is it?
 - A. equilateral triangle
 - **B.** square
 - C. regular pentagon
 - **D.** regular hexagon

Three-Dimensional Figures

(over Lesson 11-1)

In the figure, name the faces of the rectangular prism.

A. PTUQ, QUVR, PQRS, SWVR, PTWR, and TWQR

linute CHECK

- B. PTUQ, QUVR, PQRS, SWVR, PTWS, and TUVW
- C. PTUQ, QURS, PQRS, SWVR, PTWS, and TUVS
- **D.** *PTUQ*, *QUVR*, *PQRV*, *SWVR*, *PTWS*, and *TUVW*

Sind the height of a cylinder with a radius of 3 feet and a volume of 127.2 ft³. Round to the nearest tenth.

B. 13.5 ft

C. 14.1 ft

D. 20.3 ft

A cubic inch of water weighs 0.036 pound. A 10gallon fish tank measures 20 inches by 10 inches by 12 inches. How much will the water in the fish tank weigh if it is filled to capacity?

- A. 83.1 pounds
- 86.4 pounds
- **C.** 277.8 pounds
- D. 666.7 pounds

Which is the best estimate for the volume of a rectangular prism with the dimensions shown in the table.

Dimensions	
length	5.8 in.
width	2.1 in.
height	9.7 in.

- **C.** 60 in³
- **D.** 6.0 in³

🗖 A 🗖 B 🗖 C 🗖 D

Find the volume of the solid shown in the figure. If necessary, round to the nearest tenth.

D. 324 in³

Find the volume of a rectangular pyramid having base area 31.5 ft² and height 7.4 ft.

B. 101 ft²

C. 116.6 ft²

D. 223.1 ft²

Find the volume of a hexagonal pyramid having base area 120 mm² and height 9 mm.

- A. 1080 mm³
- **B.** 540 mm³

D. 180 mm³

- A cone has a radius of 1.2 inches and a height of 5 inches. What is the volume of the cone?
 - A. 30.2 in³
 - **B.** 22.6 in³
 - **C.** 11.3 in³

🗖 A 🗆 B 🗖 C 🗖 D

6 A cylinder and a cone have the same volume. Both the cylinder and the cone have a radius of 3 inches. If the height of the cone is 6 inches, what is the height of the cylinder?

- **B.** 3 in.
- **C.** 6 in.
- **D.** 9 in.

Find the surface area of the solid shown in the figure. If necessary, round to the nearest tenth.

- **C.** 470.9 cm²
- **D.** 499.2 cm²

12 cm

6.5 cm

3.2 cm

Find the surface area of the solid shown in the figure. If necessary, round to the nearest tenth.

- **C.** 158 in²
- **D.** 480 in²

0%

🗖 A 🗖 B 🗖 C 🗖 D

Find the surface area of a cylinder with diameter 12 cm and height 29 cm. If necessary, round to the nearest tenth.

- A. 348 cm²
- **B.** 1093.2 cm²
- **C**, 1319.5 cm²
- **D.** 3279.8 cm²

Find the surface area of a cube having a side length of 0.8 m. If necessary, round to the nearest tenth.

- **A.** 1.6 m²
- **B.** 3.1 m²

D. 4.8 m²

Amy needs to wrap a box that is 18 inches long, 11 inches wide, and 3 inches high. What is the minimum amount of wrapping paper that she needs?

A. 750 in²

- **B.** 700 in²
- **C.** 594 in²

🗖 A 🗖 B 🗖 C 🗖 D

6 To the nearest square inch, how much area does the label of the can shown in the figure cover?

C. 18 in²

■ A ■ B ■ C ■ D

Find the surface area of the solid shown in the figure. If necessary, round to the nearest tenth.

- **A.** 10.6 m²
- **B.** 11.5 m²

D. 28.8 m²

1.6 m

4.5 m

1.6 m

Find the surface area of the solid shown in the figure. If necessary, round to the nearest tenth.

A. 77.3 ft²

C. 157 ft²

D. 628.3 ft²

kPoint

An ice cream cone has a radius of 1.2 inches, and a slant height of 6 inches. What is the lateral surface area of the cone?

- **A.** 7.2 in²
- **B.** 21.8 in²

Three-Dimensional Figures

e-Minute CHECK

Standardized Test Practice

An ornament has the shape of 2 regular pentagonal pyramids attached at their bases. The length of each side of the polygon is 1 inch, and the slant height of each pyramid is 2 inches. What is the surface area of the ornament?

A. 5 in²

- **C.** 20 in²
- **D.** 25 in²

(over Lesson 11-5)