

Three-Dimensional Figures

Chapter Menu
Lesson 11-1 Three-Dimensional Figures
Lesson 11-2 Volume: Prisms and Cylinders
Lesson 11-3 Volume: Pyramids, Cones, and Spheres
Lesson 11-4 Surface Area: Prisms and Cylinders
Lesson 11-5 Surface Area: Pyramids and Cones
Lesson 11-6 Similar Solids

Lesson Menu

Five-Minute Check (over Chapter 10)
Main Ideas and Vocabulary
Concept Summary: Polyhedrons
Example 1: Identify Solids
Example 2: Real-World Example

Main Ideas

- Identify three-dimensional figures.
- Draw various views of three-dimensional figures.

New Vocabulary

- plane
- solid
- polyhedron
- edge
- vertex
- face
- prism
- base
- pyramid
- cylinder
- cone

H1P Three-Dimensional Figures

CONCEPT SUMMARY				Polyhedrons
Polyhedron	triangular prism	rectangular prism	triangular pyramid	rectangular pyramid
Number of Bases	2	2	1	1
Polygon Base	triangle	rectangle	triangle	rectangle
Figure	$\xrightarrow{\sim}$			

EXAMPLE Identify Solids

(1) A. Identify the solid. Name the bases, faces, edges, and vertices.

Answer: This figure has two parallel congruent bases that are rectangles, GHJK and LMNP, so it is a rectangular prism.
faces: GHJK, LMNP, GHML, HJNM, JKPN, GKPL edges: $\overline{G H}, \overline{H J}, \overline{J K}, \overline{G K}, \overline{L M}, \overline{M N}$, $\overline{N P}, \overline{L P}, \overline{G L}, \overline{H M}, \overline{J N}, \overline{K P}$
vertices: G, H, J, K, L, M, N, P

EXAMPLE Identify Solids

(1) B. Identify the solid. Name the bases, faces, edges, and vertices.

Answer: This figure has one triangular base, $D E F$, so it is a
 triangular pyramid.
faces: $D E F, D E G, D F G, E F G$
edges: $\overline{D E}, \overline{D F}, \overline{D G}, \overline{E F}, \overline{E G}, \overline{F G}$
vertices: D, E, F, G

EXAMPPE Identify Solids

(1) C. Identify the solid. Name the bases, faces, edges, and vertices.

Answer: The solid has two parallel circular bases. So, it is a cylinder: bases A and B.

Your Progress

(1) A. Identify the solid. Name the bases, faces, edges, and vertices.

(A.) rectangular pyramid; base: $B C D E$; faces: $A B C, A C D, A D E, A E B, B C D E ;$ edges: $\overline{A B}, \overline{A C}, \overline{A D}, \overline{A E}, \overline{B C}, \overline{C D}, \overline{D E}, \overline{E B}$; vertices: A, B, C, D, E
B. rectangular pyramid; base: $B C D E$; faces: $A B C, A C D, A D E, A E B, B C D E ;$ edges: $\overline{A B}, \overline{A C}, \overline{A D}, \overline{A E}, \overline{B C}, \overline{C D}, \overline{D E}, \overline{E B}$; vertices: A, B, C, D, E
C. triangular pyramid; base: $B C D E ;$ faces: $A B C, A C D, A D E, A E B ;$ edges: $\overline{A B}, \overline{A C}, \overline{A D}, \overline{A E}$; vertices: A, B, C, D, E
D. rectangular pyramid; base: $B C D E$; faces: $A B C, A C D, A D E, A E B$; edges: $\overline{A B}, \overline{A C}, \overline{A D}, \overline{A E}$; vertices: A, B, C, D, E

CHECK Your Progress

(1) B. Identify the solid. Name the bases, faces, edges, and vertices.

A. rectangular pyramid; bases: GHJK,LMNP; faces: GHJK,LMNP,GHML,HJNM,JKPN,GKPL; edges: $\overline{G H}, \overline{H J}, \overline{J K}, \overline{G K}, \overline{L M}, \overline{M N}, \overline{N P}, \overline{L P}, \overline{G L}, \overline{H M}, \overline{J N}, \overline{K P}$; vertices: G, H, J, K, L, M, N, P
B. rectangular prism; bases: $G H J K, L M N P$; faces: $G H M L, H J N M, J K P N, G K P L ;$ edges: $\overline{G H}, \overline{H J}, \overline{J K}, \overline{G K}, \overline{M N}, \overline{N P}, \overline{L P}, \overline{L M} ;$ vertices: G, H, J, K, L, M, N, P
C. triangular prism; bases: $G H J K, L M N P$; faces: $G H M L, H J N M, J K P N, G K P L ;$ edges: $\overline{G H}, \overline{H J}, \overline{J K}, \overline{G K}, \overline{M N}, \overline{N P}, \overline{L P}, \overline{L M}$; vertices: G, H, J, K, L, M, N, P
D. rectangular prism; bases: $G H J K, L M N P$; faces: $G H J K, L M N P, G H M L, H J N M, J K P N, G K P L ;$ edges: $\overline{G H}, \overline{H J}, \overline{J K}, \overline{G K}, \overline{L M}, \overline{M N}, \overline{N P}, \overline{L P}, \overline{G L}, \overline{H M}, \overline{J N}, \overline{K P}$; vertices: G, H, J, K, L, M, N, P

Your Progress

(1) C. Identify the solid. Name the bases, faces, edges, and vertices.

A. triangular pyramid; bases: $A B C, D E F$; faces: $A B C, A B E D, A C F D, B C F E, D E F$; edges: $\overline{A B}, \overline{A C}, \overline{A D}, \overline{B C}, \overline{B E}, \overline{C F}, \overline{D E}, \overline{D F}, \overline{E F}$; vertices: A, B, C, D, E, F
B. triangular prism; bases: $A B C, D E F$; faces: $A B C, A B E D, A C F D, B C F E, D E F$; edges: $\overline{A B}, \overline{A C}, \overline{A D}, \overline{B C}, \overline{B E}, \overline{C F}, \overline{D E}, \overline{D F}, \overline{E F}$; vertices: A, B, C, D, E, F
C. rectangular prism; bases: $A B C, D E F$; faces: $A B C, A B E D, A C F D, B C F E, D E F$; edges: $\overline{A B}, \overline{A C}, \overline{B C}, \overline{D E}, \overline{E F}$; vertices: A, B, C, D, E, F
D. triangular prism; bases: $A B C, D E F$; faces: $A B E D, A C F D, B C F E$; edges: $\overline{A B}, \overline{A C}, \overline{B C}, \overline{D E}, \overline{D F}, \overline{E F}$; vertices: A, B, C, D, E, F

Real-World EXAMPLE

(2) A. ARCHITECTURE An architect's sketch shows the plans for a new skyscraper. Each unit on the drawing represents 80 feet. Draw a top view and find the area of the ground floor.

The drawing is two rectangles, a 4×6 and a 2×1, so the actual dimensions are
$4(80) \times 6(80)$ and $2(80) \times 1(80)$ or 320 feet $\times 480$ feet and 160 feet $\times 80$ feet.
(2) To find the area, add the areas of the two rectangles.
$A=320 \bullet 480+160 \bullet 80$ or $166,400 \mathrm{ft}^{2}$
Answer: The area of the ground floor is 166,400 square feet.

(2) B. Draw a top-count view of the building.

Using the top view from part A, write the number of levels for each unit of the building. Answer:

2	2	7	7	7
2	2	7	7	7
2	2	2	2	
2	2	2	5	
1	2	2	5	
1	2	2	5	

Real-World EXAMPLE

(2) C. How many floors are in the skyscraper if each floor is 16 feet high?
You can see from the side view and top-count view that the height of the building is 7 units.

total height: 7 units $\times 80$ feet per unit $=560$ feet number of floors: 560 feet $\div 16$ feet per floor $=35$ floors.

Answer: 35 floors

CHECK Your Progress

(1) A. ARCHITECTURE An architect's sketch shows the plans for a new office building. Find the area of the ground floor if each unit represents 75 feet.
A. $\mathbf{2 , 2 5 0} \mathrm{ft}^{\mathbf{2}}$
(B.) $\mathbf{1 6 8 , 7 5 0} \mathrm{ft}^{\mathbf{2}}$

C. $90,000 \mathrm{ft}^{2}$

D. $202,500 \mathrm{ft}^{\mathbf{2}}$

H1P Three-Dimensional Figures

CHECK Your Progress

(1) B. ARCHITECTURE An architect's sketch shows the plans for a new office building. Draw a top-count view of the building.

(A.). | 2 | 2 | 2 | 2 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 3 | 3 | 3 | 2 |
| 2 | 2 | 3 | 3 | 3 | 2 |
| 2 | 2 | 2 | 2 | 2 | 2 |
| 2 | 2 | 2 | 2 | 2 | 2 |

B. | | 2 | 2 | 2 | |
| :--- | :--- | :--- | :--- | :--- |
| 5 | 5 | 5 | 5 | 5 |

C.

1	1	1	1	1	1
1	1	2	2	2	1
1	1	2	2	2	1
1	1	1	1	1	1
1	1	1	1	1	1

D.

	3	3	3		
2	2	3	3	3	2
2	2	3	3	3	2

(1) C. ARCHITECTURE An architect's sketch shows the plans for a new office building. How many floors are in the office building if each floor is 15 feet high?
A. 3 floors
B. 10 floors
C. 15 floors
D. 25 floors

Lesson Menu

Five-Minute Check (over Lesson 11-1)
Main Ideas and Vocabulary
Kev Concept: Volume of a Prism
Example 1: Volume of a Rectangular Prism
Example 2: Volume of a Triangular Prism
Example 3: Real-World Example
Example 4: Standardized Test Example
Key Concept: Volume of a Cylinder
Example 5: Volume of a Cylinder

Main Ideas

- Find volumes of prisms.
- Find volumes of circular cylinders.

New Vocabulary

- volume

Volume: Prisms and Cylinders

Volume: Prisms and Cylinders

EXAMPLE Volume of a Rectangular Prism

(1) Find the volume of the prism.

$$
V=B h
$$

Formula for

$V=(l \bullet w) h$
The base is a rectangle, so $B=\ell \bullet w$.
$V=(25 \cdot 16) 8 \quad \ell=25, w=16, h=8$
$V=3200 \quad$ Simplify.
Answer: The volume is 3200 cubic centimeters.

Volume: Prisms and Cylinders

STCHECK Your Progress,

(1) Find the volume of the prism.
A. $11.5 \mathrm{ft}^{3}$

B. $22.5 \mathrm{ft}^{3}$
C. $45 \mathrm{ft}^{3}$
D. $81 \mathrm{ft}^{3}$

EXAMPIE Volume of a Triangular Prism

(2) Find the volume of the triangular prism.

$$
V=B h
$$

Formula for volume of a prism

$V=\left(\frac{1}{2} \cdot 2 \cdot 5\right) h$
$B=$ area of base or $\frac{1}{2} \cdot 2 \cdot 5^{2 \text { in. }}$
$V=\left(\frac{1}{2} \cdot 2 \cdot 5\right) 3$
The height of the prism is 3 in .
$V=15$
Simplify.
Answer: The answer is 15 cubic inches.

C) ClECK Your Progress

(2) Find the volume of the triangular prism.

A. $33.5 \mathrm{ft}^{3}$

B. $30 \mathrm{ft}^{\mathbf{3}}$

D. $10.5 \mathrm{ft}^{3}$

Real-World EXAMPLE

(3) BAKING Cake batter is poured into a pan that is a rectangular prism whose base is an 8 -inch square. If the cake batter occupies 192 cubic inches, what will be the height of the batter?

$$
\begin{array}{rlrl}
V & =B h & & \text { Formula for volume of a prism } \\
V & =\ell \bullet w \bullet h & & \text { Replace } B \text { with } \ell \bullet w . \\
192 & =8 \bullet 8 \bullet h & & \text { Replace } V \text { with } 192, \ell \text { with } 8, \text { and } w \\
192 & =64 h & & \text { with } 8 . \\
3 & =h & & \text { Simplify. } \\
& & \text { Divide each side by } 64 .
\end{array}
$$

Answer: The height of the batter is 3 inches.
(3) SWIMMING POOLS A swimming pool is filled with 960 cubic feet of water. The pool is a rectangular prism 20 feet long and 12 feet wide and is the same depth throughout. Find the depth of the water.
A. 2 feet

0\%

B. 4 feet
C. 8 feet
D. 30 feet

Standardized Test EXAMPLE

(4) Find the volume of the solid.

A $262 \mathrm{~m}^{3}$
B $972 \mathrm{~m}^{3}$
C $918 \mathrm{~m}^{3}$
D $1458 \mathrm{~m}^{3}$

Read the Test Item
The solid is made up of a rectangular prism and a triangular prism. The volume of the solid is the sum of both volumes.

Solve

$V($ solid $)=V$ (rectangular prism $)+V$ (triangular prism $)$

Volume: Prisms and Cylinders

Standardized Test EXAMPLE

(4) $V($ solid $)=l \bullet w \bullet h+B h$

$$
\begin{array}{ll}
=12 \cdot 9 \cdot 9+\left(\frac{1}{2} \cdot 9 \cdot 9\right) \cdot 12 & \text { Substitute. } \\
=972+486 \text { or } 1458 \mathrm{~m}^{3} & \text { Simplify. }
\end{array}
$$

Answer: The answer is D.

Volume: Prisms and Cylinders

ChCHECK Your Progress,

(4) Find the volume of the solid.
A. $1492 \mathrm{in}^{3}$

B. $932 \mathrm{in}^{3}$
(C.) $896 \mathrm{in}^{3}$
D. $718 \mathrm{in}^{3}$
 Quis mintams

Volume: Prisms and Cylinders

KEY CONCEPT	
Words	The volume V of a cylinder with radius r is the area of the base B times the height h.
Symbols	$V=B h$, where $B=\pi r^{2}$ or $V=\pi r^{2} h$

EXAMPLE Volume of a Cylinder

(5) A. Find the volume of the cylinder. Round to the nearest tenth.

Estimate $3 \bullet 7^{2} \bullet 14=2058$

$$
\begin{aligned}
& V=B h \\
& V=\pi r^{2} h
\end{aligned}
$$

$$
V=\pi \bullet 7^{2} \bullet 14 \quad \text { Replace } r \text { with } 7 \text { and } h \text { with } 14
$$

$$
V \approx 2155.1 \quad \text { Compare to the estimate. }
$$

Answer: The volume is about 2155.1 cubic feet.

EXAMPLE Volume of a Cylinder

(5) B. Find the volume of the cylinder. Round to the nearest tenth. diameter of base 10 m , height 2 m

Since the diameter is 10 m , the radius is 5 m .

$$
\begin{array}{ll}
V=\pi r^{2} h & \text { Formula for volume of a cylind } \\
V=\pi \bullet 5^{2} \bullet 2 & \text { Replace } r \text { with } 5 \text { and } h \text { with } 2 . \\
V \approx 157.1 & \text { Simplify. }
\end{array}
$$

Answer: The volume is about 157.1 cubic meters.

CHECK Your Progress

(5) A. Find the volume of the cylinder. Round to the nearest tenth.
A. $175.9 \mathrm{in}^{3}$

B. $336 \mathrm{in}^{3}$
C. $351.9 \mathrm{in}^{3}$
D. $615.8 \mathrm{in}^{3}$

C) CHECK Your Progress:

(5) B. Find the volume of the cylinder. Round to the nearest tenth. diameter of base 8 cm , height 6 cm
A. $1206.4 \mathrm{~cm}^{3}$
B. $\mathbf{3 0 1 . 6} \mathrm{cm}^{\mathbf{3}}$
C. $226.2 \mathrm{~cm}^{3}$
D. $150.8 \mathrm{~cm}^{3}$

Lesson Menu

Five-Minute Check (over Lesson 11-2)
Main Ideas and Vocabulary
Key Concept: Volume of a Pyramid
Example 1: Volume of a Pyramid
Key Concept: Volume of a Cone
Example 2: Volume of a Cone
Key Concept: Volume of a Sphere
Example 3: Volume of a Sphere
Example 4: Real-World Example

Main Ideas

- Find volumes of pyramids.
- Find volumes of cones and spheres.

New Vocabulary

- sphere

H-3 Volume: Pyramids, Cones, and Spheres

KEY CONCEPT	Volume of a Pyramid
Words	The volume V of a pyramid is one-third the area of the base B times the height h.
Symbols	$V=\frac{1}{3} B h$

COncepts in MQtion

Animation: Volume of Pyramids, Cones, and Spheres

EXAMPLE Volume of a Pyramid

(1) Find the volume of the pyramid. Round to the nearest tenth if necessary.
$V=\frac{1}{3} B h$
Formula for volume

$V=\frac{1}{3}(15 \cdot 15) h$
The base is a square, so $B=15 \bullet 15$.
$V=\frac{1}{3}(15 \cdot 15) 12$
$V=900$
The height of the pyramid is 12 inches.

Simplify.
Answer: The volume is 900 cubic inches.

CHECK Your Progress

(1) Find the volume of the pyramid. Round to the nearest tenth if necessary.

B. $168 \mathrm{in}^{3}$
C. $336 \mathrm{in}^{3}$
D. $448 \mathrm{in}^{3}$

88/CheckPoint

Volume: Pyramids, Cones, and Spheres

KEY CONCEPT

Volume of a Cone
Words The volume V of a cone with radius r is one-third the area of the base B times the height h.
Symbols $V=\frac{1}{3} B h$ or $V=\frac{1}{3} \pi r^{2} h$, where $B=\pi r^{2}$

Model

EXAMPLE Volume of a Cone

(2) Find the volume of the cone. Round to the nearest tenth.
$V=\frac{1}{3} \pi r^{2} h$
Formula for volume of a cone

$$
\begin{aligned}
& V=\frac{1}{3} \cdot(5 \cdot 5)^{2} \cdot 8 \\
& V \approx 253.4
\end{aligned}
$$

Replace r with 5.5 and h with 8 .
Simplify.

Answer: The volume is about 253.4 cubic meters.

C)CrECK Your Progress

(2) Find the volume of the cone. Round to the nearest tenth.
A. $40.3 \mathrm{in}^{3}$

(B.) $422.7 \mathrm{in}^{3}$

0\%

C. $715.8 \mathrm{in}^{3}$
D. $1690.7 \mathrm{in}^{3}$

Volume: Pyramids, Cones, and Spheres

KEY CONCEPT Volume of a Sphere

Words The volume V of a sphere is fourModel thirds times pi times the radius cubed.
Symbols $\quad V=\frac{4}{3} \pi r^{3}$

EXAMPLE Volume of a Sphere

(3) Find the volume of the sphere. Round to the nearest tenth.

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} & & \text { Formula for the volume of a sphere } \\
& =\frac{4}{3} \bullet \pi \bullet 5^{3} & & \text { Replace } r \text { with } 5 . \\
& \approx 523.6 \mathrm{ft}^{3} & & \text { Simplify. }
\end{aligned}
$$

Answer: The volume of the sphere is about 523.6 cubic feet.

Volume: Pyramids, Cones, and Spheres

CHECK Your Progress

(3) Find the volume of the sphere. Round to the nearest tenth.
A. $339.3 \mathrm{~cm}^{\mathbf{3}}$

0\%
B. $763.4 \mathrm{~cm}^{3}$
C. $3053.6 \mathrm{~cm}^{3}$
D. $9160.9 \mathrm{~cm}^{3}$
(4) A. LANDSCAPING When mulch was dumped from a truck, it formed a cone-shaped mound with a diameter of 15 feet and a height of 8 feet. What is the volume of the mulch?
Estimate $\frac{1}{3} \cdot 3 \bullet 8^{2} \cdot 8=512$
$V=\frac{1}{3} \pi r^{2} h$
Formula for the volume of a cone
$V=\frac{1}{3} \bullet \pi \cdot(7.5)^{2} \cdot 8$
$V \approx 471$
Since $d=15$, replace r with 7.5. Replace h with 8.

Simplify.

Volume: Pyramids, Cones, and Spheres

Real-World EXAMPLE
(4) Answer: The volume of the mulch is about 471 cubic feet.
(4) B. LANDSCAPING When mulch was dumped from a truck, it formed a cone-shaped mound with a diameter of 15 feet and a height of 8 feet. A person shoveling the mulch removes it at a rate of $1.5 \mathrm{ft}^{3}$ every minute. How long does it take for the pile of mulch to be completely removed?
To determine how long it takes for the pile of mulch to be completely removed, divide the volume of the pile of mulch by the rate of removal.
$\frac{471 \mathrm{ft}^{3}}{1.5 \frac{\mathrm{ft}^{3}}{\mathrm{~min}}}=314 \mathrm{~min}$

Volume: Pyramids, Cones, and Spheres

Real-World EXAMPLE
(4) $314 \mathrm{~min} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=5.2 \mathrm{hrs}$

Answer: It will take about 5.2 hours for the pile of mulch to be completely removed.

CHECK Your Progress

(4) A. PLAYGROUND A load of wood chips for a playground was dumped and formed a cone-shaped mound with a diameter of 10 feet and a height of 6 feet. What is the volume of the wood chips? Round to the nearest tenth.
A. $628.3 \mathrm{ft}^{3}$
B. $471.2 \mathrm{ft}^{3}$
C. $377.0 \mathrm{ft}^{3}$
D. $157.1 \mathrm{ft}^{3}$

CHECK Your Progress

(4) B. PLAYGROUND A load of wood chips for a playground was dumped and formed a cone-shaped mound with a diameter of 10 feet and a height of 6 feet. A person shoveling the wood chips removes them at a rate of $2 \mathrm{ft}^{3}$ every minute. How long does it take for the load of wood chips to be completely removed?
(A.) 1.3 hours
B. 3.1 hours
C. 3.9 hours
D. 5.2 hours

(8) Math Chapter

RESOURLES $T \sqrt{~} \sqrt{ }$

Lesson Menu

Five-Minute Check (over Lesson 11-3)
Main Ideas and Vocabulary
Key Concept: Lateral Area and Surface Area of Prisms

Example 1: Surface Area of Prisms
Key Concept: Lateral Area and Surface Area of Cylinders

Example 2: Surface Area of a Cylinder
Example 3: Real-World Example

Surface Area: Prisms and Cylinders

Main Ideas

- Find lateral area and surface areas of prisms.
- Find lateral area and surface areas of cylinders.

New Vocabulary

- net
- lateral face
- lateral area
- surface area

KEY CONCEPT

Lateral Area and Surface Area of Prisms

Words
The lateral area L of a prism is the perimeter of the base P times the height h.

Symbols $L=P h$
Model

Words The surface area S of a prism is the lateral area L plus the area of the two bases $2 B$.

Symbols $\quad S=L+2 B$ or $S=P h+2 B$

Surface Area: Prisms and Cylinders

EXAMPLE Surface Area of Prisms

(1) A. Find the lateral area and surface area of the prism.

Find the lateral area

$$
\begin{aligned}
L & =P h \\
& =(2 \ell+2 w)(h) \\
& =(2 \bullet 34+2 \bullet 21)(4) \\
& =440 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
S & =L+2 B \\
& =L+2 \ell w \\
& =440+2(34)(21) \\
& =1868 \mathrm{~cm}^{2}
\end{aligned}
$$

Answer: The lateral area is 440 square centimeters. The surface area is 1868 square centimeters.

11F-4 Surface Area: Prisms and Cylinders

EXAMPLE Surface Area of Prisms

(1) B. Find the lateral area and surface area of the prism.

The lateral area is made up of bases that are not parallel.

$$
\begin{aligned}
L & =P h \\
& =(12+16+20)(3) \\
& =144 \mathrm{~m}^{2}
\end{aligned}
$$

Write the formula.
P is perimeter of the triangular base. h is the height of the prism.
Simplify.

Surface Area: Prisms and Cylinders

EXAMPLE Surface Area of Prisms

(1) Find the surface area.

$$
\begin{aligned}
S & =L+2 B \\
& =L+2\left(\frac{1}{2} b h\right) \\
& =144+2\left(\frac{1}{2} \cdot 12 \cdot 16\right) \\
& =336 \mathrm{~m}^{2}
\end{aligned}
$$

Write the formula.
$B=\frac{1}{2} b h$ (area of triangle)
Substitution.

Simplify.
Answer: The lateral area of the triangular prism is 144 square meters. The surface area of the triangular prism is 336 square meters.
(1) A. Find the lateral area and the surface area of the rectangular prism.
A. lateral area, $152 \mathrm{in}^{2}$; surface area, 292 in 2

B. lateral area, $\mathbf{1 8 2} \mathrm{in}^{2}$; surface area, 322 in 2
C. Iateral area, $304 \mathrm{in}^{2}$; surface area, 444 in 2
D. lateral area, $364 \mathrm{in}^{2}$; surface area, 560 in 2

$\left(\begin{array}{l}\text { Math } \\ \text { nline } \\ \text { Huapter } \\ \text { REOURGES }\end{array}\right.$

CHECK Your Progress:

(1) B. Find the lateral area and the surface area of the triangular prism.
A. lateral area, $19 \mathrm{ft}^{2}$; surface area, $31 \mathrm{ft}^{2}$

B. lateral area, $61 \mathrm{ft}^{2}$; surface area, $96 \mathrm{ft}^{2}$
C. lateral area, $84 \mathrm{ft}^{2}$; surface area, $96 \mathbf{f t}^{2}$
D. lateral area, $96 \mathrm{ft}^{2}$; surface area, $108 \mathrm{ft}^{2}$

KEY CONCEPT
Lateral Area and Surface Area of Cy/inders
Words The lateral area L of a cylinder with radius Model

COncepts in MQtion

Interactive Lab:
Surface Area of a Cylinder

11F-4 Surface Area: Prisms and Cylinders

EXAMPLE Surface Area of a Cylinder

(2) Find the lateral area and surface area of the cylinder. Round to the nearest tenth.

Estimate (2 • 3 • 5 • 8) + (2 • 5 • 5^{2}) or $390 \mathrm{~m}^{2}$

Find the lateral area
$L=2 \pi r h$
$=2 \pi(5)(8)$
$=80 \pi$
$\approx 251.3 \mathrm{~m}^{2}$
exact answer
approximate answer

Surface Area: Prisms and Cylinders

EXAMPLE Surface Area of a Cylinder

(2) Find the surface area.

$$
\begin{aligned}
S & =L+2 \pi r^{2} \\
& =80 \pi+2 \pi(5)^{2} \\
& =130 \pi \\
& =408.4 \mathrm{~m}^{2}
\end{aligned}
$$

exact answer
approximate answer

How does your estimate compare to your answer?
Answer: The lateral area is about 251.3 square inches and the surface area is about 408.4 square inches.

CHECK Your Progress

(2) Find the lateral area and the surface area of the cylinder. Round to the nearest tenth.
(A. lateral area, $1082.0 \mathrm{in}^{2}$; surface area, 1504.4 in 2

B. lateral area, $1082.0 \mathrm{in}^{2}$; surface area, 3852.9 in 2
C. lateral area, $2163.9 \mathrm{in}^{2}$; surface area, 2586.4 in 2
D. lateral area, $4436.1 \mathrm{in}^{2}$; surface area, 4858.6 in 2

(8) Math

Chapter

Real-World EXAMPLE

(3) CEREALS A company packages its cereal in a rectangular prism that is 2.5 inches by 7 inches by 12 inches. It is considering packaging it in a cylindershaped container having a 6 -inch diameter and a height of 7.5 inches. Which uses the least amount of packaging?
Surface Area of Rectangular Prism Style

$$
\begin{array}{rlrl}
S & =L & + & 2 B \\
& =P h & + & 2 l w \\
& =(2 \bullet 7+2 \cdot 2.5)(12)+ & 2(7)(2.5) \\
& =263 \mathrm{in}^{2} &
\end{array}
$$

Quily

Surface Area: Prisms and Cylinders

Real-World EXAMPLE

(3) Surface Area of Cylinder Style
$\underbrace{\text { Lateral Area }}$

$$
\begin{aligned}
S & =L \\
& =2 \pi r h \\
& =2 \pi(3)(7.5) \\
& =197.9 \mathrm{in}^{2}
\end{aligned}
$$

$$
+\quad 2 B
$$

$$
+2 \pi r^{2}
$$

$$
+\quad 2 \pi(3)^{2}
$$

Answer: Since $197.9 \mathrm{in}^{2}<263 \mathrm{in}^{2}$, the cylinder uses less packaging.

CHECK Your Progress

3 CANDY A candy company is deciding between two types of packaging for its gumballs. The first option is a rectangular prism that is 6 inches by 4 inches by 1.5 inches. The second option is a cylinder having a radius of 2 inches and a height of 5 inches. Which option requires less packaging?
A. The rectangular prism requires less packaging.
B. The cylinder requires less packaging.
C. Both options require the same amount of packaging.
D. cannot be determined

Lesson Menu

Five-Minute Check (over Lesson 11-4)
Main Ideas and Vocabulary
Example 1: Surface Area of a Pyramid
Example 2: Real-World Example
Key Concept: Surface Area of a Cone

Example 3: Surface Area of a Cone

Main Ideas

- Find surface areas of pyramids.
- Find surface areas of cones.

New Vocabulary

- slant height

EXAMPLE Surface Area of a Pyramid

(1) Find the surface area of the square pyramid.

First find the lateral area. The lateral area of the pyramid is made up of four triangles.
Estimate $L=4\left(\frac{1}{2}\right)(8)(9)=144$

$L=4\left(\frac{1}{2}\right) b h \quad$ Area of 4 triangles
$=4\left(\frac{1}{2}\right)(8)(8.9) \quad$ Replace b with 8 and h with 8.9.
$=142.4 \mathrm{ft}^{2} \quad$ Simplify.

EXAMPIE Surface Area of a Pyramid

(1) Then find the surface area. The base of the pyramid is a square.
$S=L+B$
$=L+s^{2}$
$=142.4+8^{2}$
$=206.4 \mathrm{ft}^{2}$

Write the formula.
The area of a square is s^{2}.
Substitution
Simplify.

Is your answer reasonable?
Answer: The surface area of the square pyramid is 206.4 square feet.

Surface Area: Pyramids and Cones

STHECK Your Progress,

(1) Find the surface area of the square pyramid.
A. $16.5 \mathrm{~m}^{2}$
B. $33 \mathrm{~m}^{2}$
C. $\mathbf{4 2} \mathrm{m}^{2}$
D. $75 \mathrm{~m}^{2}$

(2) CANOPIES A canopy is in the shape of a square pyramid that is 3.4 meters on each side. The slant height is 2 meters. How much canvas is used for the canopy?

Find the lateral area only, since there is no bottom to the canopy.
Estimate $L=4\left(\frac{1}{2}\right)(3)(2)=12$
$L=4\left(\frac{1}{2}\right) b h$
Formula for area of 4 triangles
(2) $=4\left(\frac{1}{2}\right)(3.4)(2)$
$=13.6$

Replace b with 3.4 and h with 2.

Simplify.

Answer: 13.6 square meters of canvas was used to cover the canopy. Compare your answer to the estimate.

Surface Area: Pyramids and Cones

ChIECK Your Progress:

(2) TENT A tent is in the shape of a square pyramid that is 8 feet on each side. The slant height is 10 feet. Find the surface area of the tent.

A. $320 \mathrm{ft}^{\mathbf{2}}$

0\%
B. $224 \mathrm{ft}^{\mathbf{2}}$
(C. $160 \mathrm{ft}^{2}$
D. $80 \mathrm{ft}^{\mathbf{2}}$
$\square \mathbf{A} \square \mathbf{B} \square \mathbf{C} \square \mathrm{D}$
88/CheckPoint

11-5 Surface Area: Pyramids and Cones

KEY CONCEPT

Words The surface area S of a cone Model with slant height ℓ and radius r is the lateral area plus the area of the base.

Symbols $S=L+B$ or $S=\pi r \ell+\pi r^{2}$

EXAMPLE Surface Area of a Cone

(3) Find the surface area of the cone. Round to the nearest tenth.

$$
S=\pi r l+\pi r^{2}
$$

Formula for surface area of a cone
$=\pi(3.5)(10)+\pi(3.5)^{2}$
≈ 148.4
Replace r with 3.5 and ℓ with 10.

Simplify.

Answer: The surface area of the cone is about 148.4 square feet.

Surface Area: Pyramids and Cones

CHECK Your Progress

(3) Find the surface area of the cone. Round to the nearest tenth.

A. $376.1 \mathrm{~cm}^{2}$

0\%
B. $\mathbf{5 8 7 . 4} \mathrm{cm}^{2}$
C. $963.5 \mathrm{~cm}^{2}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. $1028.0 \mathrm{~cm}^{2}$

Lesson Menu

Five-Minute Check (over Lesson 11-5)
Main Ideas and Vocabulary
Example 1: Identify Similar Solids
Example 2: Find Missing Measures
Kev Concept: Ratios of Similar Solids
Example 3: Find Surface Areas of Similar Solids
Example 4: Real-World Example

Main Ideas

- Identify similar solids.
- Solve problems involving similar solids.

New Vocabulary

- similar solids

EXAMPLE Identify Similar Solids

(1) A. Determine whether the pair of solids is similar.

Write a proportion comparing radii and heights.
12(4) $\stackrel{?}{=}(7.5)(6)$
$48 \neq 45$
Find the cross products.
Simplify.
Answer: The radii and heights are not proportional, so the cylinders are not similar.

EXAMPLE Identify Similar Solids

(1) B. Determine whether the pair of solids is similar.

Write a proportion comparing corresponding edge lengths.
$54(1.5) \stackrel{?}{=} 9(9)$
Find the cross products.

$$
81=81
$$

Simplify.
Answer: The corresponding measures are proportional, so the pyramids are similar.

C) CHECK Your Progress

(1) A. Determine whether the pair of solids is similar.

B. no
C. They are congruent.
D. cannot be determined

Cumis

CHECK Your Progress

(1) B. Determine whether the pair of solids is similar.
A. yes
B. no

C. They are congruent.
D. cannot be determined

EXAMPLE Find Missing Measures

(2) The cylinders to the right are similar. Find the radius of cylinder A.

Cylinder A 8 cm Cylinder B

radius of cylinder A height of cylinder A radius of cylinder B height of cylinder B
$\frac{x}{8}=\frac{4.5}{6}$
$6 x=8(4.5)$

Substitute the known values.

Find the cross products.

EXAMPLE Find Missing Measures
(2) $6 x=36$
$x=6 \quad$ Divide each side by 6.

Answer: The radius of cylinder A is 6 centimeters.

ClIECK Your Progress

(2) The rectangular prisms below are similar. Find the height of prism B.

B. 0.9 in
C. 2 in

0\%
D. 4.5 in

88/CheckPoint

KEY CONCEPT

Ratios of Similar Solfds

$\begin{array}{ll}\text { Words } & \text { If two solids are similar with a scale factor } \\ \text { of } \frac{a}{b^{\prime}} \text { then the surface areas have a ratio of } \\ \left(\frac{a}{b}\right)^{2} \text { and the volumes have a ratio of }\left(\frac{a}{b}\right)^{3} . \\ \text { Symbols } & \frac{\text { surface area of Solid } \mathrm{A}}{\text { surface area of Solid } \mathrm{B}}=\left(\frac{a}{b}\right)^{2} \\ & \frac{\text { volume of Solid } \mathrm{A}}{\text { volume of Solid } \mathrm{B}}=\left(\frac{a}{b}\right)^{3}\end{array}$

EXAMPI: Find Surface Areas of Similar Solids

(3) A cylinder has a surface area of 245 square inches. If the dimensions are doubled, what is the surface area of the new cylinder?

The cylinders are similar and the scale factor of the side lengths $\frac{a}{b}$ is $\frac{1}{2}$.
Therefore, surface areas of the rectangular prisms
have a ratio of $\left(\frac{a}{b}\right)^{2}$ or $\left(\frac{1}{2}\right)^{2}$.

EXAMPIE
 Find Surface Areas of Similar Solids

(3) Set up a proportion to find the surface area of the new cylinder.
$\frac{\text { surface area of original cylinder }}{\text { surface area of new cylinder }}=\left(\frac{a}{b}\right)^{2}$
Write a proportion.

$$
\frac{245}{S}=\left(\frac{1}{2}\right)^{2}
$$

Substitute known values. Let $S=$ the surface area of the new cylinder.

EXAMPIE Find Surface Areas of Similar Solids
(3)

$$
\frac{245}{S}=\frac{1}{4}
$$

$4 \cdot 245=S \bullet 1$

$$
980=S
$$

Multiply.

Answer: The surface area of the new cylinder is 980 square inches.

ChIECK Your Progress:

(3) A cube has a surface area of 294 square centimeters. If the dimensions are doubled, what is the surface area of the new cube?
A. $73.5 \mathrm{~cm}^{2}$
B. $392 \mathrm{~cm}^{2}$
C. $588 \mathrm{~cm}^{2}$

88/CheckPoint
(4) DOLLHOUSE A small model of a fish tank for Eva's dollhouse is built on a scale of 1 cm to 5 in . and has a volume of $24 \mathrm{~cm}^{3}$. What is the volume of the actual fish tank?
Explore You know the scale factor $\frac{a}{b}$ is $\frac{1}{5}$
and the volume of the model fish tank is $24 \mathrm{~cm}^{3}$.
(4) Plan Since the volumes have a ratio of $\left(\frac{a}{b}\right)^{3}$ and $\frac{a}{b}=\frac{1}{5}$, replace a with 1 and b with 5 in $\left(\frac{a}{b}\right)^{3}$.

Solve

$$
\begin{aligned}
\frac{\text { volume of model }}{\text { volume of tank }} & =\left(\frac{a}{b}\right)^{3} & \begin{array}{l}
\text { Write the ratio } \\
\text { of volumes. }
\end{array} \\
& =\left(\frac{1}{5}\right)^{3} & \begin{array}{l}
\text { Replace } a \\
\text { with 1 and } b \\
\text { with 5. }
\end{array} \\
& =\frac{1}{125} & \text { Simplify. }
\end{aligned}
$$

Real-World EXAMPLE

(4) The volume of the actual tank is 125 times the volume of the model.

Answer: The volume of the model is $125 \bullet 24 \mathrm{~cm}^{3}$ or 3000 cubic centimeters.

Check Use estimation to check the reasonableness of this answer. $125 \cdot 20=2500$ and $125 \cdot 30=$ 3,750 , so the answer must be between 2,500 and 3,750 . The answer is $3,000 \mathrm{~cm}^{3}$ is reasonable.

C) ChECK Your Progress:

(4) TRAINS A scale model of a railroad boxcar is built on a scale of 1 inch to 50 inches and has a volume of 72 cubic inches. What is the volume of the actual boxcar?
(A.) $9,000,000 \mathrm{in}^{3}$
B. $\mathbf{3 7 3}, \mathbf{2 4 8} \mathrm{in}^{3}$
C. $180,000 \mathrm{in}^{3}$

D. $3,600 \mathrm{in}^{3}$

Three-Dimensional Figures

Chapter Resources Menu

$8 / 8 /$ checkPoint Five-Minute Checks

Hath Tools

COncepts in MQtion

$\mathrm{An}_{\boldsymbol{j}_{\mathrm{m}} \mathrm{atil}^{\mathrm{ti}} \mathrm{n} \text { Volume of Pyramids, Cones, and Spheres }}$ Interactive $+\begin{aligned} & + \\ & \text { Lab }\end{aligned} \div$ Surface Area of a Cylinder

Three-Dimensional Figures

Lesson 11-1 (over Chapter 10)
Lesson 11-2 (over Lesson 11-1)
Lesson 11-3
(over Lesson 11-2)
Lesson 11-4
(over Lesson 11-3)
Lesson 11-5
(over Lesson 11-4)
Lesson 11-6
(over Lesson 11-5)

Three-Dimensional Figures

Image Bank

To use the images that are on the following three slides in your own presentation:

1. Exit this presentation.
2. Open a chapter presentation using a full installation of Microsoft ${ }^{\circledR}$ PowerPoint ${ }^{\circledR}$ in editing mode and scroll to the Image Bank slides.
3. Select an image, copy it, and paste it into your presentation.

Image Bank

Image Bank

$\mid \leftarrow \leftarrow \Rightarrow$
(1) If $\triangle F O G \cong \triangle H A T$, name the segment that is congruent to $T H$. A. $\overline{O F}$
B. $\overline{G O}$
C. $\overline{F O}$
(D.) $\overline{G F}$

$88 /$ CheckPoint
に $\Leftarrow \rightarrow$

Three-Dimensional Figures

Five-Minute CHECK (over Chapter 10)
(2) The vertices of figure $W X Y Z$ are $W(2,3), X(4,5)$, $Y(5,-1)$, and $Z(1,-2)$. Find the coordinates of the image after a reflection over the y-axis.
(A.) $W^{\prime}(-2,3), X^{\prime}(-4,5)$,
$Y^{\prime}(-5,-1), Z^{\prime}(-1,-2)$
B. $\quad W^{\prime}(-2,3), X^{\prime}(-4,5)$,
$Y^{\prime}(-5,1), Z^{\prime}(-1,-2)$
C. $W^{\prime}(-2,3), X^{\prime}(-4,-5)$,
$Y^{\prime}(-5,-1), Z^{\prime}(-1,-2)$
D. $W^{\prime}(2,3), X^{\prime}(-4,5)$,
$Y^{\prime}(5,-1), Z^{\prime}(-1,-2)$

Three-Dimensional Figures

Five-Minute CHECK (over Chapter 10)
(3) Find the value of x in the figure. Then find the missing angle measures.

$$
\text { A. } x=38 ; 38^{\circ} ; 114^{\circ}
$$

B. $x=67 ; 67^{\circ} ; 134^{\circ}$
C. $x=40 ; 40^{\circ} ; 120^{\circ}$
(D. $x=45 ; 45^{\circ} ; 135^{\circ}$
(4) Find the area of a triangle with a base of 34 centimeters and a height of 19 centimeters.
A. $161.5 \mathrm{~cm}^{2}$
(B. $\mathbf{3 2 3} \mathrm{cm}^{2}$
C. $646 \mathrm{~cm}^{2}$
D. $680 \mathrm{~cm}^{2}$

$1 \leftarrow \leftarrow \rightarrow$
(5) A round table has a diameter of 25 inches. What is the circumference of the table? Round to the nearest tenth.
A. 39.3 in .
(B.) 78.5 in .

C. 196.3 in .
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 490.9 in.

Three-Dimensional Figures
0 Fivo-Minute CHECK (over Chapter 10)

Standardized Test Practice

(6) The exterior angle at each vertex of a regular polygon measures 72°. What type of polygon is it?
A. equilateral triangle
0%
B. square
C. regular pentagon
D. regular hexagon

Che-MinMie CHECK (over Lesson 11-1)
(1) Identify the solid.

A. cube

0\%

C. rectangular pyramid
D. triangular prism

Three-Dimensional Figures

Sive-Minute CHECK

(over Lesson 11-1)
(2) In the figure, name the faces of the rectangular prism.
A. PTUQ, QUVR, PQRS,
 SWVR, PTWR, and TWQR
B. PTUQ, QUVR, PQRS, SWVR, PTWS, and TUVW
C. PTUQ, QURS, PQRS, SWVR, PTWS, and TUVS
D. PTUQ, QUVR, PQRV, SWVR, PTWS, and TUVW

C) Fivo-Minute cHECK

(over Lesson 11-1)
(3) In the figure, list the edges of the solid.
(A. $\overline{P T}, \overline{Q U}, \overline{R V}, \overline{S W}, \overline{P S}, \overline{S R}$, $\overline{R Q}, \overline{P Q}, \overline{T U}, \overline{U V}, \overline{V W}, \overline{W T}$
B. $\overline{P T}, \overline{Q U}, \overline{R V}, \overline{S V}, \overline{P S}, \overline{S R}$, $\overline{R Q}, \overline{P Q}, \overline{T Q}, \overline{U V}, \overline{V W}, \overline{W T}$
c. $\overline{P T}, \overline{Q U}, \overline{R P}, \overline{S W}, \overline{P S}, \overline{S R}$, $\overline{R Q}, \overline{P Q}, \overline{T U}, \overline{U R}, \overline{V W}, \overline{W T}$
D. $\overline{P T}, \overline{Q U}, \overline{R V}, \overline{S W}, \overline{P S}, \overline{S R}$, $\overline{R Q}, \overline{P Q}, \overline{T R}, \overline{U V}, \overline{V W}, \overline{W P}$

Three-Dimensional Figures

C) Fivo-Minute CHECK (over Lesson 11-1)

(4) In the figure, list the diagonals of the solid.
A. $\overline{P W}, \overline{T S}, \overline{Q V}, \overline{R U}$

B. $\overline{W R}, \overline{V S}, \overline{P U}, \overline{Q T}$
(C. $\overline{\boldsymbol{P V}}, \overline{Q W}, \overline{R T}, \overline{\boldsymbol{S U}}$
D. $\overline{P R}, \overline{Q S}, \overline{V T}, \overline{U W}$

Three-Dimensional Figures

\checkmark Five-Minute CHECK (over Lesson 11-1)

(5) In the figure, name the vertices.
A. TW, WS, SP, TP

(B.) $\boldsymbol{P}, \boldsymbol{S}, \boldsymbol{R}, \boldsymbol{Q}, \boldsymbol{T}, \boldsymbol{W}, \boldsymbol{V}, \boldsymbol{U}$
C. $T P, W S, V R, V Q$
D. T, U, V, W

Three-Dimensional Figures
CherMinute CHECK (over Lesson 11-1)
Standardized Test Practice
(6) How many faces of a triangular prism are triangles?
(A. 2
0%
B. 3
C. 5
D. 6
$\square A \square B \square C \square D$
$88 /$ CheckPoint
FHF

Three-Dimensional Figures
Prvo-Minute CHECK (over Lesson 11-2)
(1) Find the volume of the solid shown in the figure. If necessary, round to the nearest tenth.
A. $\mathbf{1 7 0} \mathrm{cm}^{3}$

8 cm
B. $200 \mathrm{~cm}^{3}$
C. $340 \mathrm{~cm}^{3}$
D. $\mathbf{4 0 0} \mathrm{cm}^{3}$

Three-Dimensional Figures
C Five-Minute CHECK (over Lesson 11-2)
(2) Find the volume of the solid shown in the figure. If necessary, round to the nearest tenth.
A. $612 \mathrm{in}^{3}$

B. $432 \mathrm{in}^{3}$
C. $291 \mathrm{in}^{3}$
D. $216 \mathrm{in}^{3}$
(3) Find the height of a cylinder with a radius of 3 feet and a volume of $127.2 \mathrm{ft}^{3}$. Round to the nearest tenth.

(A.) 4.5 ft

 0%B. 13.5 ft
C. 14.1 ft
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 20.3 ft

Three-Dimensional Figures

Five-Minute CHECK (over Lesson 11-2)
(4) A cubic inch of water weighs 0.036 pound. A 10gallon fish tank measures 20 inches by 10 inches by 12 inches. How much will the water in the fish tank weigh if it is filled to capacity?
A. 83.1 pounds
B. 86.4 pounds
C. 277.8 pounds
D. 666.7 pounds

Three-Dimensional Figures

ChVo-MinMie CHECK (over Lesson 11-2)

Standardized Test Practice

(5) Which is the best estimate for the volume of a rectangular prism with the dimensions shown in the table.

Dimensions	
length	5.8 in.
width	2.1 in.
height	9.7 in.

A. $240 \mathrm{in}^{3}$
B. $120 \mathrm{in}^{3}$

C. $60 \mathrm{in}^{3}$
D. $6.0 \mathrm{in}^{3}$

Three-Dimensional Figures
Prvo-Minute CHECK (over Lesson 11-3)
(1) Find the volume of the solid shown in the figure. If necessary, round to the nearest tenth.

A. $54 \mathrm{in}^{3}$

(B.) $108 \mathrm{in}^{3}$
C. $162 \mathrm{in}^{3}$
D. $324 \mathrm{in}^{3}$

Three-Dimensional Figures
C Five-Minute CHECK (over Lesson 11-3)
(2) Find the volume of the solid shown in the figure. If necessary, round to the nearest tenth.

(B.) $923.6 \mathrm{~cm}^{3}$

C. $1385.4 \mathrm{~cm}^{3}$
D. $2770.9 \mathrm{~cm}^{3}$

Three-Dimensional Figures

Five-Minute CHECK (over Lesson 11-3)
(3) Find the volume of a rectangular pyramid having base area $31.5 \mathrm{ft}^{2}$ and height 7.4 ft .
(A.) $77.7 \mathrm{ft}^{2}$

0\%
B. $101 \mathrm{ft}^{\mathbf{2}}$
C. $116.6 \mathrm{ft}^{\mathbf{2}}$
D. $223.1 \mathrm{ft}^{2}$
(4) Find the volume of a hexagonal pyramid having base area $120 \mathrm{~mm}^{2}$ and height 9 mm .
A. $1080 \mathrm{~mm}^{3}$
B. $540 \mathrm{~mm}^{3}$
C. $360 \mathrm{~mm}^{3}$
D. $180 \mathrm{~mm}^{3}$

$1 \leftarrow \leftarrow \rightarrow$

Three-Dimensional Figures

Five-Minute CHECK (over Lesson 11-3)
(5) A cone has a radius of 1.2 inches and a height of 5 inches. What is the volume of the cone?
A. $30.2 \mathrm{in}^{3}$
B. $22.6 \mathrm{in}^{3}$
0%

C. $11.3 \mathrm{in}^{3}$
D. $7.5 \mathrm{in}^{3}$

Three-Dimensional Figures
C) Fivo-MinMie CHECK (over Lesson 11-3)

Standardized Test Practice

(6) A cylinder and a cone have the same volume. Both the cylinder and the cone have a radius of 3 inches. If the height of the cone is 6 inches, what is the height of the cylinder?

0\%
(A.) 2 in.
B. 3 in.
C. 6 in.

$$
\triangle \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

D. 9 in.

Three-Dimensional Figures

C Five-Minute CHECK (over Lesson 11-4)
(1) Find the surface area of the solid shown in the figure. If necessary, round to the nearest tenth.

A. 249.6 cm 2

12 cm
B. $\mathbf{2 7 4 . 4} \mathrm{cm}^{2}$
C. $470.9 \mathrm{~cm}^{2}$
D. $499.2 \mathrm{~cm}^{2}$

Three-Dimensional Figures
C Five-Minute CHECK (over Lesson 11-4)
(2) Find the surface area of the solid shown in the figure. If necessary, round to the nearest tenth.

B. $116 \mathrm{in}^{2}$
C. $158 \mathrm{in}^{2}$
D. $480 \mathrm{in}^{2}$

FHF

Three-Dimensional Figures

Five-Minute CHECK (over Lesson 11-4)
(3) Find the surface area of a cylinder with diameter 12 cm and height 29 cm . If necessary, round to the nearest tenth.

A. $348 \mathrm{~cm}^{2}$

0%
B. $1093.2 \mathrm{~cm}^{2}$
C. $1319.5 \mathrm{~cm}^{2}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. $3279.8 \mathrm{~cm}^{2}$
(4) Find the surface area of a cube having a side length of 0.8 m . If necessary, round to the nearest tenth.
A. $1.6 \mathrm{~m}^{2}$
B. $3.1 \mathrm{~m}^{2}$
C. $3.8 \mathrm{~m}^{2}$
D. $4.8 \mathrm{~m}^{2}$

88/CheckPoint
$\mathrm{FF} \leftarrow \rightarrow$

Three-Dimensional Figures

Five-Minute CHECK (over Lesson 11-4)
(5) Amy needs to wrap a box that is 18 inches long, 11 inches wide, and 3 inches high. What is the minimum amount of wrapping paper that she needs?

A. $750 \mathrm{in}^{2}$

B. $700 \mathrm{in}^{2}$

C. $594 \mathrm{in}^{2}$
\square A■B $\square C \square D$
(D. $570 \mathrm{in}^{2}$

Three-Dimensional Figures

- Five-Minute CHECK (over Lesson 11-4)

Standardized Test Practice

(6) To the nearest square inch, how much area does the label of the can shown in the figure cover?

A. $\mathbf{4} \mathrm{in}^{2}$
(B.) $12 \mathrm{in}^{2}$
C. $18 \mathrm{in}^{2}$
D. $22 \mathrm{in}^{2}$

Three-Dimensional Figures
Che-MinMie CHECK (over Lesson 11-5)
(1) Find the surface area of the solid shown in the figure. If necessary, round to the nearest tenth.
A. $10.6 \mathrm{~m}^{2}$

B. $11.5 \mathrm{~m}^{2}$
C. $17.0 \mathrm{~m}^{2}$
D. $28.8 \mathrm{~m}^{2}$

$1 \leftarrow \Leftarrow \rightarrow$

Three-Dimensional Figures
Five-Minute CHECK (over Lesson 11-5)
(2) Find the surface area of the solid shown in the figure. If necessary, round to the nearest tenth.

A. $77.3 \mathrm{ft}^{\mathbf{2}}$

(B. $\mathbf{8 2 . 5} \mathrm{ft}^{\mathbf{2}}$

C. $157 \mathrm{ft}^{2}$
D. $628.3 \mathrm{ft}^{2}$
$1+\leftrightarrow \rightarrow$

Three-Dimensional Figures

Five-Minute CHECK (over Lesson 11-5)
(3) An ice cream cone has a radius of 1.2 inches, and a slant height of 6 inches. What is the lateral surface area of the cone?

A. $7.2 \mathbf{i n}^{2}$

0\%
B. $21.8 \mathrm{in}^{2}$
C. $22.6 \mathrm{in}^{2}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. $27.1 \mathrm{in}^{2}$

88/CheckPoint
$1 \leftarrow \leftarrow \rightarrow$

Five-Minute CHECK (over Lesson 11-5)

Standardized Test Practice

(4) An ornament has the shape of 2 regular pentagonal pyramids attached at their bases. The length of each side of the polygon is 1 inch, and the slant height of each pyramid is 2 inches. What is the surface area of the ornament?

A. $5 \mathrm{in}^{2}$
(B.) $\mathbf{1 0} \mathbf{i n}^{2}$
C. $20 \mathrm{in}^{2}$
D. $25 \mathrm{in}^{2}$

