

The Tools of Algebra

Chapter Menu
 Lesson 1-1 Using a Problem-Solving Plan
 Lesson 1-2 Numbers and Expressions
 Lesson 1-3 Variables and Expressions
 Lesson 1-4 Properties
 Lesson 1-5 Variables and Equations
 Lesson 1-6 Ordered Pairs and Relations
 Lesson 1-7 Scatter Plots

Lesson Menu

Five-Minute Check
Main Ideas and Vocabulary
Example 1: Real-World Example
Example 2: Use Inductive Reasoning to Solve Problems

Example 3: Real-World Example

Main Ideas

- Use a four-step plan to solve problems.
- Choose an appropriate method of computation.

New Vocabulary

- conjecture
- inductive reasoning

Real-World EXAMPLE

(1) PIZZA The price of a large cheese pizza at Paul's Pizza Place is $\$ 9.25$. You receive a $\$ 0.50$ discount for each additional pizza ordered, up to 10 . So, one pizza costs $\$ 9.25$, two pizzas cost $\$ 8.75$ each, three pizzas cost $\$ 8.25$ each, and so on. If you need 8 pizzas for a party, what is the cost per pizza?
Explore The problem gives the cost for the first pizza and the discount for each additional pizza ordered. We need to find the cost per pizza for an order of 8 pizzas.
Plan Use the information given to solve the problem. Look for a pattern in the costs. Extend the pattern to find the cost per pizza for an order of 8 pizzas.

Real-World EXAMPLE

(1) Solve First, find the pattern.

1 pizza costs \$9.25.
2 pizzas cost $\$ 9.25-\$ 0.50$ or $\$ 8.75$ each.
3 pizzas cost $\$ 8.75-\$ 0.50$ or $\$ 8.25$ each.
Now, extend the pattern.
4 pizzas cost $\$ 8.25-\$ 0.50$ or $\$ 7.75$ each.
5 pizzas cost $\$ 7.75$ - $\$ 0.50$ or $\$ 7.25$ each.
6 pizzas cost $\$ 7.25-\$ 0.50$ or $\$ 6.75$ each.
7 pizzas cost $\$ 6.75-\$ 0.50$ or $\$ 6.25$ each.
8 pizzas cost $\$ 6.25-\$ 0.50$ or $\$ 5.75$ each.

Real-World EXAMPLE

(1) Answer: The cost per pizza for an order of 8 pizzas would be \$5.75.

Examine It costs $\$ 9.25$ for one pizza with a discount of $\$ 0.50$ for each additional pizza ordered. For an order of 8 pizzas, the cost per pizza would be $\$ 9.25-(7 \times \$ 0.50)$ or $\$ 9.25-\$ 3.50=\$ 5.75$.
(1) MOVIE RENTAL The cost of renting movies at Mike's Marvelous Movie House is advertised as $\$ 5$ for the first movie and $\$ 3.50$ for each additional movie. Find the cost of renting 6 movies.
A. $\$ 21.00$
B. $\$ 26.00$
C. $\$ 22.50$
D. $\$ 20.50$

Use Inductive Reasoning to Solve Problems

(2) A. Find the next term in $1,4,16,64,256, \ldots$

Answer: Assuming the pattern continues, the next term is 256×4 or 1024 .

EXAMPLE

Use Inductive Reasoning to Solve Problems

(2) B. Draw the next figure in the pattern.

Answer:

The shaded point on the triangle moves in the following pattern: right, top, bottom, left, right. Assuming the pattern continues, the shaded point will be located on the top in the next figure.
(2) A. Find the next term in $48,43,38,33,28, \ldots$
A. 21
B. 22

C. 23
D. 24

C) CriECK Your Progress

(2) B. Draw the next figure in the pattern.

A.

0%

C.


```
Real-World EXAMPLE
```

(3) PLANETS The chart shows the distance of selected planets from the Sun. About how much farther is it from Earth to the Sun than from Mercury to the Sun?

Planet	Distance from Sun (millions of miles)
Mercury	36.0
Venus	67.24
Earth	92.9
Mars	141.71

(3) Explore

You know the distance from Earth to the Sun and the distance from Mercury to the Sun. You need to find about how much farther it is from Earth to the Sun than from Mercury to the Sun.

Plan The question uses the word about, so an exact answer is not needed. We can solve the problem using estimation. Estimate each distance and then subtract.

Solve Distance from Earth to the Sun: $\quad 92.9 \rightarrow 93$
Distance from Mercury to the Sun: $36.0 \rightarrow 36$

$$
93-36=57 \quad \text { Subtract } 36 \text { from } 93
$$

Answer: So, Earth is about 57 million miles farther from the Sun than Mercury is from the Sun.

Examine Since $36+57=93$, the answer makes sense.
(3) SCHOOL ENROLLMENT East Elementary School has 792 students enrolled. West Elementary School has 518 students enrolled. About how many more students does East Elementary have than West Elementary?
(A.) 270
B. 220
C. 200
D. 150

Lesson Menu

Five-Minute Check (over Lesson 1-1)
Main Ideas and Vocabulary
Concept Summary: Order of Operations
Example 1: Evaluate Expressions
Example 2: Translate Phrases into Expressions
Example 3: Real-World Example

Main Ideas

- Use the order of operations to evaluate expressions.
- Translate verbal phrases into numerical expressions.

New Vocabulary

- numerical expression
- evaluate
- order of operations

CONCEPT SUMMARY

Order of Operations

Step 1 Evaluate the expressions inside grouping symbols.
Step 2 Multiply and/or divide in order from left to right.
Step 3 Add and/or subtract in order from left to right.

EXAMPIE Evaluate Expressions

(1) A. Find the value of $24 \div 8 \times 3$.
$24 \div 8 \times 3=3 \times 3$

$$
=9
$$

Multiply 3 and 3.

Answer: 9

EXAMPLE Evaluate Expressions

(1) B. Find the value of $5(4+6)-7 \bullet 7$.

$$
\begin{aligned}
5(4+6)-7 \cdot 7 & =5(10)-7 \cdot 7 & & \text { Evaluate }(4+6) . \\
& =50-7 \cdot 7 & & 5(10) \text { means } 5 \times 10 . \\
& =50-49 & & 7 \bullet 7 \text { means } 7 \text { times } 7 .
\end{aligned}
$$

$$
=1
$$

Subtract 49 from 50.
Answer: 1

EXAWPLE Evaluate Expressions

(1) C. Find the value of $3[(18-6)+2(4)]$.

$$
\begin{aligned}
3[(18-6)+2(4)] & =3[12+2(4)] & & \text { Evaluate }(18-6) . \\
& =3(12+8) & & \text { Multiply } 2 \text { and } 4 . \\
& =3(20) & & \text { Add 12 and } 8 . \\
& =60 & & \text { Multiply 3 and } 20 .
\end{aligned}
$$

Answer: 60

EXAMPLE Evaluate Expressions

(1) D. Find the value of $\frac{49+31}{19-14}$.

$$
\begin{aligned}
\frac{49+31}{19-14} & =(49+31) \div(19-14) & & \begin{array}{l}
\text { Rewrite as a division } \\
\text { expression. }
\end{array} \\
& =80 \div 5 & & \text { Evaluate }(49+31) \\
& =16 & & \text { and }(19-14) .
\end{aligned}
$$

Answer: 16

C)CREK Your Progress

(1) A. Find the value of $63 \div 7+2$.
A. 7
B. 10
C. 8
(D.) 11

$8 / 8 /$ CheckPoint

- ClBCK Your Progress

(1) B. Find the value of $3(12-10)+14 \div 2$.
(A.) 13
B. 20
C. 33
D. 10

Sh

(1) C. Find the value of $4[(3+8)-2(4)]$.
A. 16
(B.) 12
C. 144
D. 36

88/CheckPoint

Ch Crieck your Progress
(1) D. Find the value of $\frac{21-3}{4(2)+1}$.
A. 3
B. $1 \frac{8}{9}$
(C. 2
D. $1 \frac{1}{2}$

$88 /$ CheckPoint

EXAMPLE Translate Phrases into Expressions

(2) A. Write a numerical expression for the verbal phrase.

Phrase the quotient of eighteen and six
Key Word quotient
Expression $18 \div 6$

Answer: 18 $\div 6$

EXAMPLE Translate Phrases into Expressions

(2) B. Write a numerical expression for the verbal phrase.

Phrase the sum of nine and five
Key Word sum
Expression $9+5$

Answer: $9+5$

ChIECK Your Progress:

(2) A. Write a numerical expression for the verbal phrase the product of three and five.
A. $3+5$
B. 3-5

C. 3×5
D. $3 \div 5$

dentrck Your Progress:

(2) B. Write a numerical expression for the verbal phrase the difference of seventeen and six.
A. $17+6$
(B.) 17-6

0\%

C. 17×6
D. $17 \div 6$
(3) EARNINGS Madison earns an allowance of $\$ 5$ per week. She also earns $\$ 4$ per hour babysitting, and usually baby-sits 6 hours each week. Write and evaluate an expression for the total amount of money she earns in one week.

Words $\$ 5$ allowance plus $\$ 4$ per hour per week

Expression 5 $+$
4×6

Real-World EXAMPLE
(3) $5+4 \times 6=5+24$

$$
=29
$$

Multiply.
Add.

Answer: Madison earns $\$ 29$ in one week.
(3) SHOPPING The Good Price Grocery Store advertises a special on 2-liter bottles of soft drinks. The first bottle purchased is $\$ 1.50$ and each bottle after that is $\$ 1.20$. Write and evaluate an expression for the total cost when 8 bottles are purchased.
A. $1.50+8(1.20)=11.10$
(B.) $1.50+7(1.20)=9.90$
C. $2+1.50+1.20+8=12.70$
D. $1.20+7(1.50)=11.70$

Lesson Menu

Five-Minute Check (over Lesson 1-2)
Main Ideas and Vocabulary
Example 1: Evaluate Expressions
Example 2: Evaluate Expressions
Example 3: Translate Verbal Phrases into Expressions

Example 4: Real-World Example

Main Ideas

- Evaluate expressions containing variables.
- Translate verbal phrases into algebraic expressions.

New Vocabulary

- algebra
- variable
- algebraic expression
- defining a variable

EXAWPLE Evaluate Expressions

(1) Evaluate $x-y+6$ if $x=27$ and $y=12$.

$$
\begin{aligned}
x-y+6 & =27-12+6 & & \text { Replace } x \text { with } 27 \text { and } y \text { with } 12 . \\
& =15+6 & & \text { Subtract } 12 \text { from } 27 . \\
& =21 & & \text { Add } 15 \text { and } 6 .
\end{aligned}
$$

Answer: 21

CHECK Your Progress:

(1) Evaluate $12+a-b$ if $a=7$ and $b=11$.
A. 30
B. 16
C. 8
D. 20

EXAMPI: Evaluate Expressions

(2) A. Evaluate $6 y-4 x$ if $x=3, y=4$, and $z=7$.

$$
\begin{aligned}
6 y-4 x & =6(4)-4(3) & & \text { Replace } y \text { with } 4 \text { and } x \text { with } 3 . \\
& =24-12 & & \text { Multiply. } \\
& =12 & & \text { Subtract. }
\end{aligned}
$$

Answer: 12

EXAWPIE Evaluate Expressions

(2) B. Evaluate $\frac{(z-x)}{y}$ if $x=3, y=4$, and $z=7$.

$$
\begin{aligned}
\frac{(z-x)}{y} & =(z-x) \div y & & \text { Rewrite as a division expressio } \\
& =(7-3) \div 4 & & \text { Replace } z \text { with } 7, x \text { with } 3, \text { and } \\
& =4 \div 4 & & y \text { with } 4 . \\
& =1 & & \text { Subtract. }
\end{aligned}
$$

Answer: 1

EXAMPLE Evaluate Expressions

(2) C. Evaluate $5 z+(x+4 y)-15$ if $x=3, y=4$, and $z=7$

$$
\begin{array}{rlrl}
5 z+(x+4 y)-15=5(7)+(3+4 \bullet 4)-15 & \begin{array}{l}
\text { Replace } z \text { with } \\
\\
\\
\\
\text { and } y \text { with } 3, \\
\end{array} \\
=5(7)+(3+16)-15 & & \text { Multiply } 4 \\
& \text { and } 4 .
\end{array}
$$

EXAMPIE Evaluate Expressions

(2)

$$
\begin{array}{ll}
=35+19-15 & \text { Multiply } 5 \text { and } 7 . \\
=54-15 & \text { Add } 35 \text { and } 19 .
\end{array}
$$

$$
=39
$$

Subtract 15 from 54.

Answer: 39
(2) A. Evaluate $5 p-3 m$ if $m=9, n=4$, and $p=6$.
(A.) 3
B. 13
C. 22
D. 28

STHECK Your Progress,

(2) B. Evaluate $\frac{m n}{p}$ if $m=9, n=4$, and $p=6$.
A. 4
B. $2 \frac{1}{6}$
C. $5 \frac{1}{3}$
(D.) 6

Clleck Your Progress

(2) C. Evaluate $p+(8 n-3 m)$ if $m=9, n=4$, and $p=6$.
A. 23
B. 15
C. 14
D. 11

ExAMPLE
 Translate Verbal Phrases into Expressions

(3) A. Translate the phrase 35 more than the number of tickets sold into an algebraic expression.

Words 35 more than the number of tickets sold.

Variable Let t represent the number of tickets sold.

Answer: The expression is $35+t$.

ExAMPLE
 Translate Verbal Phrases into Expressions

(3) B. Translate the phrase the difference of six times a number and ten into an algebraic expression.

Words the difference of six times a number and ten.

Variable Let n represent the number.
the difference of six times a number and ten

Answer: The expression is $6 n-10$.

0 ClECK Your Progress

(3) A. Translate the phrase eight less than the number of cookies baked into an algebraic expression.
(A.) $c-8$

0\%
B. $8-c$
C. $-8-c$
D. $-c-8$

Qnine Chapter
Hames nlrar

CHECK Your Progress

(3) B. Translate the phrase the sum of twelve and five times a number into an algebraic expression.
A. $12(5+n)$

0\%
B. $12+5+n$
C. $12+5 n$
D. $17 n$
(4) A. THEATER East Middle School sold tickets for a school play. The price of an adult ticket was $\$ 3$, and the price of a student ticket was $\$ 1$. Write an expression that represents the total amount of money collected.
Words $\quad \$ 3$ for an adult ticket and $\$ 1$ for a student ticket.
Variable Let $a=$ number of adult tickets and $s=$ number of student tickets.
$\$ 3$ for an adult ticket and $\$ 1$ for a student ticket

Expression
$3 a$ $+\quad 1 s$

Variables and Expressions

Real-World EXAMPLE

(4) Answer: The expression $3 a+1$ s can be used to find the total amount of money collected.
(4) B. THEATER East Middle School sold tickets for a school play. The price of an adult ticket was $\$ 3$ and the price of a student ticket was $\$ 1$. Suppose 70 adult tickets and 85 student tickets were sold. How much money was collected?
$3 a+1 s=3(70)+1(85) \quad$ Replace a with 70 and s with 85.
$=210+85$ Multiply.
$=295 \quad$ Add

Answer: The amount of money collected was $\$ 295$.
(4) A. RETAIL The Read It Bookstore is advertising a sale. The price of hardback books is $\$ 9.50$ and the price of paperback books is $\$ 4.50$. Write an expression that can be used to find the total amount of money spent at the bookstore.
A. $9.5+4.5$
B. $(9.5+4.5) h p$
C. $h+p$
(D. $9.5 h+4.5 p$

CHECK Your Progress:

(4) B. RETAIL The Read It Bookstore is advertising a sale. The price of hardback books is $\$ 9.50$ and the price of paperback books is $\$ 4.50$. Suppose Emily buys 5 hardback books and 4 paperback books. Find the total amount she spent at the book sale.

A. $\$ 85.50$

(B.) $\$ 65.50$
C. $\$ 60.50$
D. $\$ 126.00$

Lesson Menu

Five-Minute Check (over Lesson 1-3)
Main Ideas and Vocabulary
Key Concept: Commutative Property of Addition
Key Concept: Commutative Property of Multiplication
Kev Concept: Associative Property of Addition
Key Concept: Associative Property of Multiplication
Key Concept: Properties of Numbers
Example 1: Identify Properties
Example 2: Mental Math
Example 3: Find a Counterexample
Example 4: Simplify Algebraic Expressions

Main Ideas

- Identify and use properties of addition and multiplication.
- Use properties of addition and multiplication to simplify algebraic expressions.

New Vocabulary

- properties
- counterexample
- simplify
- deductive reasoning

KEY CONCEPT

Commutative Property of Addfition

Words The order in which numbers are added does not change the sum.
Symbols For any numbers a and $b, a+b=b+a$.
Example $2+3=3+2$
$5=5$

KEY CONCEPT

Commutative Property of Multiplication

Words The order in which numbers are multiplied does not change the product.
Symbols For any numbers a and $b, a \cdot b=b \cdot a$.
Example $2 \cdot 3=3 \cdot 2$
$6=6$

KEY CONCEPT

Associative Property of Addition

Words The way in which numbers are grouped when added does not change the sum.

Symbols For any numbers a, b, and $c,(a+b)+c=a+(b+c)$.
Example $(5+8)+2=5+(8+2)$

$$
13+2=5+10
$$

$$
15=15
$$

KEY CONCEPT

Associative Property of Multiplication

Words The way in which numbers are grouped when multiplied does not change the product.

Symbols For any numbers a, b, and $c,(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
Example $(4 \cdot 6) \cdot 3=4 \cdot(6 \cdot 3)$
$24 \cdot 3=4 \cdot 18$
$72=72$

KEY CONCEPT	Wroperties of Numbers		
Property	Sords	Symbols	Examples
Additive Identity	When 0 is added tha any number, the sum is the number.	For any number a, $a+0=0+a=a$.	$5+0=5$ $0+9=9$
Multiplicative Identity	When any number is multiplied by 1, the product is the number.	For any number a, $a \cdot 1=1 \cdot a=a$.	$7 \cdot 1=7$ $1 \cdot 6=6$
Multiplicative Property of Zero	When any number is multiplied by 0, the product is 0.	For any number a, $a \cdot 0=0 \cdot a=0$.	$4 \cdot 0=0$ $0 \cdot 2=0$

EXAMPPE Identify Properties

(1) A. Name the property shown by the statement.

$$
3 \cdot 10 \cdot 2=3 \cdot 2 \cdot 10
$$

Answer: The order of the numbers changed. This is the Commutative Property of Multiplication.

EXAMPPE Identify Properties

(1) B. Name the property shown by the statement.
$(2+5)+m=2+(5+m)$

Answer: The grouping of the numbers and variables changed. This is the Associative Property of Addition.

ClIECK Your Progress

(1) A. Name the property shown by the statement.
$(4 \bullet 6) \cdot 2=4 \bullet(6 \cdot 2)$
A. Commutative Property of Multiplication
B. Associative Property of Multiplication
C. Multiplicative Identity
D. Multiplicative Property of Zero

(1) B. Name the property shown by the statement.
$12+9=9+12$
A. Commutative Property of

Addition
B. Associative Property of Addition
C. Additive Identity
D. Distributive Property

EXAMPIE Mental Math

(2) Find $(18 \cdot 20) \bullet 5$ mentally.

Group 20 and 5 together because $20 \bullet 5=100$. It is easy to multiply by 100 mentally.
$(18 \cdot 20) \bullet 5=18 \bullet(20 \bullet 5) \quad$ Associative Property of Multiplication

$$
\begin{array}{ll}
=18 \bullet 100 \quad & \begin{array}{l}
\text { Multiply } 20 \text { and } 5 \\
\text { mentally. }
\end{array}
\end{array}
$$

Multiply 18 and 100 mentally.
Answer: 1800
(2) Find $4 \bullet 8 \cdot 25$ mentally.
A. 200
B. 600

0\%
C. 800
D. 1250

EXAMPLE Find a Counterexample

(3) State whether the following conjecture is true or false. If false, provide a counterexample.
Division of whole numbers is commutative
Write two division expressions using the Commutative Property, and then check to see whether they are equal.
$12 \div 6 \stackrel{?}{=} 6 \div 12 \quad$ State the conjecture.

$$
2 \neq 0.5 \quad \text { Divide. }
$$

We found a counterexample. That is, $12 \div 6 \neq 6 \div 12$. So, division is not commutative.

Answer: The conjecture is false.

C) CHECK Your Progress

(3) State whether the following conjecture is true or false. If false, provide a counterexample.
Subtraction of whole number is commutative
A. true
B. false, 7 - 4=7-4
C. false, 7-4 $=4-7$
D. false, $(7-4)-2 \neq 7-(4-2)$

EXAWPLE Simplify Algebraic Expressions

(4) A. Simplify $5 \cdot(3 \bullet r)$.
$5 \cdot(3 \bullet r)=(5 \cdot 3) r$

$$
=15 r
$$

Associative Property of Multiplication

Substitution Property of Equality; $5 \bullet 3=15$

Answer: 15r

EXAWPIE Simplify Algebraic Expressions

(4) B. Simplify $12+(x+18)$.
$12+(x+18)=12+(18+x) \quad$ Commutative Property of Addition

$$
=(12+18)+x \quad \begin{array}{ll}
\text { Associative Property of } \\
\text { Addition }
\end{array}
$$

$$
=30+x
$$

Substitution Property of Equality; $12+18=30$

Answer: $30+x$

Clleck Your Progress

(4) A. Simplify $7+(12+m)$.
(A. $19+m$
B. $19 m$
C. $5+m$
D. $12 m+7$

d CHECK Your Progress,

(4) B. Simplify $(6 \bullet a) \bullet 4$
A. 10a
B. $24+a$
C. $2 a$
D. $24 a$

88/CheckPoint

Lesson Menu

Five-Minute Check (over Lesson 1-4)
Main Ideas and Vocabulary
Example 1: Solve an Equation
Example 2: Standardized Test Example
Example 3: Translate Sentences into Equations
Example 4: Real-World Example

Main Ideas

- Identify and solve open sentences.
- Translate verbal sentences into equations.

New Vocabulary

- equation
- open sentence
- solution
- solving the equation

EXAMPLE Solve an Equation

(1) Find the solution of $44+p=53$. Is it 11,9 , or 7 ?

Replace p with each value.

Value for \boldsymbol{p}	$\mathbf{4 4 + \boldsymbol { p } = 5 3}$	True or False?
11	$44+11 \stackrel{?}{=} 53$	false
9	$44+9 \stackrel{?}{=} 53$	true \checkmark
7	$44+7 \stackrel{?}{=} 53$	false

Answer: Therefore, the solution of $44+p$ is 9 .

C) CHECK Your Progress

(1) Find the solution of $24-a=9$. Is it 11,13 , or 15 ?
A. 11
B. 13
C. 15
D. none of the above

Standardized Test EXAMPLE

(2) Which value is the solution of $4 x-1=11$?

A 5
B 4
C 3
D 2
Read the Test Item
The solution is the value that makes the equation true.
Solve the Test Item
Test each value.

Standardized Test EXAMPLE

(2) Answer Choice A: Substitute 5 for x.

$$
\begin{aligned}
4 x-1 & =11 \\
4(5)-1 & \stackrel{?}{=} 11 \\
19 & \neq 11
\end{aligned} \quad \text { Replace } x \text { with } 5 .
$$

Standardized Test EXAMPLE

(2) Answer Choice B: Substitute 4 for x.

$$
\begin{aligned}
4 x-1 & =11 \\
4(4)-1 & \stackrel{?}{=} 11 \\
15 & \neq 11
\end{aligned} \quad \text { Replace } x \text { with } 4 .
$$

Standardized Test EXAMPLE

(2) Answer Choice C: Substitute 3 for x.

$$
\begin{aligned}
4 x-1 & =11 \\
4(3)-1 & \stackrel{?}{=} 11 \quad \text { Replace } x \text { with } 3 . \\
11 & =11 \quad \checkmark \quad
\end{aligned}
$$

(2) Answer Choice D: Substitute 2 for x.

$$
\begin{aligned}
4 x-1 & =11 \\
4(2)-1 & \stackrel{?}{=} 11 \quad \text { Replace } x \text { with } 2 . \\
7 & \neq 11
\end{aligned}
$$

Answer: Since 3 makes the equation true, the answer is C.

ClIECK Your Progress

(2) Which value is the solution of $3+6 w=15$?
A. 1
(B. $\mathbf{2}$
C. 3
D. 4

EXAMPLE Translate Sentences into Equations

(3) The quotient of a number and four is nine. Find the number.

Words The quotient of a number and four is nine.

Variable Let $n=$ the number.

Equation $\frac{n}{4}=9$

Answer: 36

shentec Your Progress:

(3) Solve $\frac{m}{3}=7$.
A. -10
B. 4
C. 10
D. 21

Rea-World EXAMPLE

(4) A. MAPLE SYRUP It takes about 45 gallons of tree sap to make about 1 gallon of maple syrup. The table shows the relationship between the number of gallons of tree sap and the number of gallons of maple syrup. Given t, the number of gallons of tree sap used, write an equation to find m, the number of gallons of maple syrup.

Gallons of Tree Sap, \boldsymbol{t}	Gallons of Maple Syrup, \boldsymbol{m}
45	1
90	2
135	3
180	4

(4) Words Number of gallons of tree sap is 45 times the number of gallons of maple syrup.
Variable Let $t=$ number of gallons of tree sap. Let $m=$ number of gallons of maple syrup.

Equation $t=45 \mathrm{~m}$

Answer: $t=45 \mathrm{~m}$
(4) B. How many gallons of tree sap are needed to make 5 gallons of maple syrup?
$t=45 \mathrm{~m}$
$t=45$ (5)
$t=225$

Write the equation.
Replace m with 5 .
Multiply.

Answer: 225 gallons

CHECK Your Progress

(4) PETS The light in a salt water aquarium should provide about 5 watts per gallon of water to allow for photosynthesis. Given g gallons of water, write an equation to find w the number of watts required. Then find the number of watts required for a $55-$ gallon aquarium.
A. $g=5 w ; 11$ watts
B. $g=5 w ; 275$ watts

C. $w=5 g ; 11$ watts
(D.) $w=5 g ; 275$ watts

Lesson Menu

Five-Minute Check (over Lesson 1-5)
Main Ideas and Vocabulary
Example 1: Graph Ordered Pairs
Example 2: Identify Ordered Pairs
Example 3: Relations as Tables and Graphs
Example 4: Real-World Example

Main Ideas

- Use ordered pairs to locate points.
- Use tables and graphs to represent relations.

New Vocabulary

- coordinate system
- y-axis
- x-coordinate
- y-coordinate
- coordinate plane
- origin
- graph
- relation
- x-axis
- domain
- ordered pair

EXAMPL: Graph Ordered Pairs

(1) A. Graph the ordered pair $(3,4)$ on a coordinate system.

Step 1 Start at the origin. Answer:
Step 2 Since the x-coordinate is 3 , move 3 units to the right.
Step 3 Since the y-coordinate is 4 , move 4 units up. Draw a dot.

EXAMPLE Graph Ordered Pairs

(1) B. Graph the ordered pair $(0,2)$ on a coordinate system.

Step 1 Start at the origin.
Step 2 Since the x-coordinate is 0 , you will not need to move to the right.
Step 3 Since the y-coordinate is 2 , move 2 units up. Draw a dot.

STCHECK Your Progress,

(1) A. Graph the ordered pair $(2,5)$ on a coordinate system.

C.

B.

D. none of the above

STCHECK Your Progress,

(1) B. Graph the ordered pair $(4,0)$ on a coordinate system.
(A)

C.

B.

D. none of the above

EXAMPLE Identify Ordered Pairs

(2) A. Write the ordered pair that names point G.

Step 1 Start at the origin.
Step 2 Move right on the x-axis to find the x-coordinate of point G, which is 1 .
Step 3 Move up the y-axis to find the y-coordinate, which is 1 .

Answer: The ordered pair for G is $(1,1)$.

EXAMPLE Identify Ordered Pairs

(2) B. Write the ordered pair that names point H.

Step 1 Start at the origin.
Step 2 Move right on the x-axis to find the x-coordinate of point H, which is 4 .
Step 3 Since the y-coordinate is zero, you will not need to
 move up.
Answer: The ordered pair for H is $(4,0)$.

Sh CHEC Kour Progress:

(2) A. Write the ordered pair that names point A.
A. $(2,5)$
B. $(3,5)$

C. $(2,3)$

0\%
D. $(3,2)$

STCHECK Your Progress,

(2) B. Write the ordered pair that names point B.
A. $(6,6)$
B. $(0,6)$

C. $(0,0)$

0\%
D. $(6,0)$
e2is

EXAMPLE Relations as Tables and Graphs

(3) Express the relation $\{(1,4),(2,2),(3,0),(0,2)\}$ as a table and as a graph. Then determine the domain and range. Answer:

x	y
1	4
2	2
3	0
0	2

The domain is $\{0,1,2,3\}$. The range is $\{0,2,4\}$.

COncepts in MQtion

Animation:

Ordered Pairs and Relations

CHECK Your Progress

(3) Express the relation $\{(4,1)$, $(3,2),(0,1),(2,3)\}$ as a table and as a graph. Then determine the domain and range.

$$
\begin{aligned}
\text { A. } & D=\{1,2,3\}, \\
& R=\{4,3,0,2\} \\
\text { (B. } & D=\{4,3,0,2\} \\
& R=\{1,2,3\}, \\
\text { C. } & D=\{4,3,2\}, \\
& R=\{1,2,3\} \\
\text { D. } & D=\{1,2,3\}, \\
& R=\{4,3,2\}
\end{aligned}
$$

x	y
4	1
3	2
0	1
2	3

(4) EARNINGS Austin earns $\$ 5$ an hour doing yard work. Suppose x represents the number of hours Austin works.
A. Make a table of ordered pairs in which the x-coordinate represents the hours worked and y represents the amount of money Austin earns for 1, 2, 3, 4, and 5 hours of work.

Answer:

x	\boldsymbol{y}	(x, y)
1	5	$(1,5)$
2	10	$(2,10)$
3	15	$(3,15)$
4	20	$(4,20)$
5	25	$(5,25)$

(4) EARNINGS Austin earns $\$ 5$ an hour doing yard work. Suppose x represents the number of hours Austin works.
B. Graph the ordered pairs.

Answer:

\boldsymbol{x}	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
1	5	$(1,5)$
2	10	$(2,10)$
3	15	$(3,15)$
4	20	$(4,20)$
5	25	$(5,25)$

(4) EARNINGS Austin earns $\$ 5$ an hour doing yard work. Suppose x represents the number of hours Austin works.
C. Describe the graph.

Answer: The points appear to lie on a line.

Ordered Pairs and Relations

CHIECK Your Progress

(4) BAKING Sue is following a recipe for cookies which requires 2 cups of sugar for each batch of cookies made. Suppose x represents the number of batches made.
A. Make a table of ordered pairs in which the x-coordinate represents the number of batches made and y represents the number of cups of sugar needed for 1, 2, 3, 4, and 5 batches made.
A.

x	y	(x, y)
1	3	$(1,3)$
2	4	$(2,4)$
3	5	$(3,5)$
4	6	$(4,6)$
5	7	$(5,7)$

B.

\boldsymbol{x}	\boldsymbol{y}	(x, y)
1	2	$(1,2)$
2	2	$(2,2)$
3	2	$(3,2)$
4	2	$(4,2)$
5	2	$(5,2)$

C. | \boldsymbol{x} | \boldsymbol{y} | (x, y) |
| :---: | :---: | :---: |
| 1 | 0 | $(1,0)$ |
| 2 | 2 | $(2,2)$ |
| 3 | 4 | $(3,4)$ |
| 4 | 6 | $(4,6)$ |
| 5 | 8 | $(5,8)$ |

(D.

\boldsymbol{x}	\boldsymbol{y}	(x, y)
1	2	$(1,2)$
2	4	$(2,4)$
3	6	$(3,6)$
4	8	$(4,8)$
5	10	$(5,10)$

Ordered Pairs and Relations

ACHECK Your Progress

(4) BAKING Sue is following a recipe for cookies which requires 2 cups of sugar for each batch of cookies made. Suppose x represents the number of batches made.
B. Graph the ordered pairs.
A.

Batches of Cookies
C.

D.

CheckPoint

CHECK Your Progress

(4) BAKING Sue is following a recipe for cookies which requires 2 cups of sugar for each batch of cookies made. Suppose x represents the number of batches made.
C. Describe the graph.
(A.) The points appear to fall in a line slanting upward to the right.
B. The points appear to fall randomly.

Batches of Cookies
C. The points appear to fall in a line slanting downward to the right.
D. none of the above

RESOURGES

Lesson Menu

Five-Minute Check (over Lesson 1-6)
Main Ideas and Vocabulary
Example 1: Construct a Scatter Plot
Kev Concept: Types of Relationships
Example 2: Interpret Scatter Plots
Example 3: Real-World Example

Main Ideas

- Construct scatter plots.
- Analyze trends in scatter plots.

New Vocabulary

- scatter plot

EXAMPLE Construct a Scatter Plot

(1) BREAD The table shows the average cost of a loaf of bread from 1920-2000. Make a scatter plot of the data.

Year	1920	1930	1940
Cents	12	9	8
Year	1950	1960	1970
Cents	14	20	24

Year	1980	1990	2000
Cents	52	72	99

Let the horizontal axis, or x-axis, represent the year. Let the vertical axis, or y-axis, represent the cost.

D-P Scatter Plots

EXAMPLE Construct a Scatter Plot

(1) BREAD The table shows the average cost of a loaf of bread from 1920-2000. Make a scatter plot of the data.

Year	1920	1930	1940
Cents	12	9	8
Year	1950	1960	1970
Cents	14	20	24

Year	1980	1990	2000
Cents	52	72	99

Answer:

Then graph ordered pairs (years, cost).

C) CriECK Your Progress

(1) BIRTH STATISTICS The table shows the number of babies born at Central Hospital during the past eight months. Make a scatter plot of the data.

Month	Jan.	Feb.	Mar.	Apr.
Number of Babies	12	21	17	9

Month	May	June	July	Aug.
Number of Babies	15	26	18	11

A.

B.

(C.)

D.

F-P Scatter Plots

KEY CONCEPT

Types of Relationships

Positive Relationship

EXAMPLE Interpret a Scatter Plot

(2) Determine whether a scatter plot of the height of basketball player and number of rebounds might show a positive, negative, or no relationship. Explain your answer.

As the height increases, the number of rebounds increases.

6668707274
Height (in.)
Answer: positive relationship

CHECK Your Progress

(2)

Determine whether a scatter plot of the outside temperature and the heating bill might show a positive, negative, or no relationship. Explain your answer.
A. As the outside temperature decreases, the heating bill will increase. This is a negative relationship.
B. As the outside temperature decreases, the heating bill will increase. This is a positive relationship.
C. As the outside temperature increases, the heating bill will increase. This is a negative relationship.
D. Outside temperature and heating bill have no relationship.

Real-World EXAMPLE

(3) A. TEMPERATURE The table shows temperatures in degrees Celsius and the corresponding temperatures in degrees Fahrenheit. Make a scatter plot of the data.

${ }^{\circ} \mathrm{F}$	32	41	50	59
${ }^{\circ} \mathrm{C}$	0	5	10	15

${ }^{\circ} \mathrm{F}$	68	77	86
${ }^{\circ} \mathrm{C}$	20	25	30

Let the vertical axis represent degrees Fahrenheit.
Graph the data.
(3) B. Does the scatter plot show a relationship between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$? Explain.

Answer: Yes, a positive relationship is shown. As ${ }^{\circ} \mathrm{C}$ increase, so do ${ }^{\circ} \mathrm{F}$.

(3) C. Predict the Fahrenheit temperature for $35^{\circ} \mathrm{C}$.

Answer: By looking at the pattern on the graph, we can predict that the Fahrenheit temperature corresponding to $35^{\circ} \mathrm{C}$ would be about 95 degrees.

Your Progress

(3) A. STUDY SKILLS The table shows hours spent studying for a test and the corresponding test score. Make a scatter plot of the data.
(A.)

B.

Hours	3	2	5	1
Score	72	75	90	68

Hours	4	2	6
Score	85	70	92

0\%
C.

D.

$\square A \square B \square C \square D$

CheckPoint

CHECK Your Progress

(3) B. STUDY SKILLS The table shows hours spent studying for a test and the corresponding test score. Does the scatter plot show

Hours	3	2	5	1
Score	72	75	90	68

Hours	4	2	6
Score	85	70	92

(A.) Yes, a positive relationship exists.

Hours
B. Yes, a negative relationship exists.
C. No, no relationship exists.
D. none of the above

CHECK Your Progress

(3) C. STUDY SKILLS The table shows hours spent studying for a test and the corresponding test score. Predict the test score for a

Hours	3	2	5	1
Score	72	75	90	68

Hours	4	2	6
Score	85	70	92

A. between 65 and 70
B. between 75 and 80
C. between 95 and 100

Hours

D. between 105 and 110

Chapter Resources Menu

$8 / 8$ CheckPoint Five-Minute Checks
Id Image Bank目 Math Tools

COncepts

in MQtion

$$
A_{I_{\text {mata }}}
$$ Interactive

Lab
$\times \div$

Five-Minute CHECK

Lesson 1-1

Lesson 1-2 (over Lesson 1-1)
Lesson 1-3 (over Lesson 1-2)
Lesson 1-4 (over Lesson 1-3)
Lesson 1-5 (over Lesson 1-4)
Lesson 1-6 (over Lesson 1-5)
Lesson 1-7 (over Lesson 1-6)

The Tools of Algebra

Image Bank

To use the images that are on the following three slides in your own presentation:

1. Exit this presentation.
2. Open a chapter presentation using a full installation of Microsoft ${ }^{\circledR}$ PowerPoint ${ }^{\circledR}$ in editing mode and scroll to the Image Bank slides.
3. Select an image, copy it, and paste it into your presentation.

Image Bank

Image Bank

Tive The Tools of Algebra
 Image Bank

$\mathrm{F} \leftarrow \overrightarrow{ }$

(1) The Tools of Algebra
 COncepts in MQtion $\mathrm{An}_{\mathrm{m}_{\text {mat }}}$

IF

(1) Find the value of $1.8+0.6$.
(A.) 2.4
B. 1.86
C. 1.2
D. 1.14

88/CheckPoint
ト世

(2) Find the value of $85.24+12.8$.
A. 94.22
B. 97.24

C. 97.32
D. 98.04

(3) Find the value of $114-2.9$.
A. 111
(B.) 111.1
0%
C. 112.9
D. 112.1

(4) Find the value of 8×47.
(A.) 376
B. 367
C. 476
D. 592

$\mathrm{r} \leftarrow \mathrm{\leftarrow} \rightarrow$

(5) Find the value of $\frac{72}{4}$.
A. 228
B. 76
C. 18
D. 12

Standardized Test Practice

(6) The sales figures for a business for the months in the first quarter are shown in the table. What were the total sales for the first quarter?

Month	Sales
January	$\$ 12,000$
February	$\$ 15,000$
March	$\$ 10,000$

A. $\$ 12,000$
B. $\mathbf{\$ 1 7 , 0 0 0}$
C. $\$ 27,000$
D. $\$ 37,000$
(1) Find the next term in the list $4,10,16,22,28, \ldots$
A. 32
B. 34
C. 36
D. 40

$88 /$ CheckPoint
He
(2) Find the next term in the list $8,13,18,23,28, \ldots$
(A.) 33
B. 36

C. 37
D. 39

Fivo-Minuite CHECK (over Lesson 1-1)

(3) Ken uses $\frac{1}{2}$ cup of cat food each day for his cat. If there are $10 \frac{1}{2}$ cups left in the bag, how long will the cat food last? Use the four-step problem solving plan to solve.
A. 10 days
B. 11 days
(C.) 21 days
D. 22 days
$\mathrm{FF}+\rightarrow$

The Tools of Algebra

Five-Minute CHECK (over Lesson 1-1)
(4) Using six coins, how can you make change for 95 cents that will not make change for a quarter? Use the four-step problem-solving plan to solve.
A. 3 quarters, 3 nickels, 1 dime
(B.) $\mathbf{3}$ quarters, $\mathbf{2}$ nickels, $\mathbf{1}$ dime
C. $\mathbf{3}$ quarters, 1 nickel, 2 dimes
D. 3 quarters, 1 nickel, 1 dime

CheckPoint

Standardized Test Practice

(5) Ron plans to add 3 books to his science fiction collection every month. If he has 18 science fiction books now, how many will he have in one year?
A. 21

B. 36
C. 54
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 57

(1) Find the value of the expression $54-\frac{42}{7}$.
A. 1.7
B. 5
C. 48
D. 60

に $\Leftarrow \rightarrow$
(2) Find the value of the expression $80+6(11)$.

A. 97

(B.) 146
C. 886
D. 946

(3) Find the value of the expression $\frac{(37+38)}{(30-5)}$.
A. -12.5
B. -6
0%
(C. 3
D. 8.8
(4) Write a numerical expression for the verbal phrase: thirteen more than eight.
(A.) $8+13$
B. 8-13
C. $13 \div 8$
D. 13×8

88/CheckPoint
$r+\leftrightarrow \rightarrow$
(5) Write a numerical expression for the verbal phrase: thirty-six divided by two.
A. 36×2
B. $36+2$

0\%

c. $\frac{2}{36}$
(D. $\frac{36}{2}$

Five-Minute CHECK (over Lesson 1-2)

Standardized Test Practice

(6) Which expression does not have a value of 24?
(A.) $8+4 \cdot 2$

0\%
B. $10 \bullet 4-8 \bullet 2$
C. $\frac{(8 \cdot 6)}{(6-4)}$
D. $\frac{27}{9} \cdot(14-6)$

(1) Evaluate $c+8-a$ for $a=4$ and $c=3$.
A. 15
B. 10
C. 9
D. 7

$88 /$ CheckPoint
に $\Leftarrow \rightarrow$
(2) Evaluate $\frac{a c}{2}$ for $a=4$ and $c=3$.
A. 3
B. 3.5
(C.) 6
D. 12

(3) Evaluate $7 a-(2 c+b)$ for $a=4, b=2$, and $c=3$.
A. 16
B. 20

0\%
C. 21
D. 24

(4) Translate the phrase into an algebraic expression. three feet shorter than the height of a building
A. $3 b$
B. $b+3$
C. 3-b
(D.) $b-3$

FHF

F) Fivo-Minute CHECK (over Lesson 1-3)

(5) Translate the phrase into an algebraic expression. eight more than three times a number
(A. $3 n+8$
B. $8 n+3$
C. $3(n+8)$
D. $11 n$

C) Fivo-Minute CHECK (over Lesson 1-3)

Standardized Test Practice

(6) Which expression represents three less than four times a number?
A. $3-4 n$
0%
(B.) 4n-3
C. $4(n-3)$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 3n-4

The Tools of Algebra

Five-Minute CHECK (over Lesson 1-4)
(1) Name the property shown by the statement $(4 b) c=4(b c)$.
(A.) Associative Property of Multiplication
B. Commutative Property of Multiplication
C. Distributive Property of Multiplication
D. Multiplicative Identity

(2) Name the property shown by the statement $4 y+0=4 y$.
A. Additive Inverse
B. Additive Identity

C. Multiplicative Identity
D. Multiplicative Property of Zero
(3) Find the sum mentally. $18+13+2+7$
A. 30
B. 37

0\%
C. 40
D. 45

(4) Find the product mentally. $6 \bullet 7 \bullet 5$
A. 18
B. 45
C. 120
D. 210

FHF
(5) Simplify $3 \bullet(y \bullet 9)$.

A. $12 y$

(B. $\mathbf{2 7} y$

C. $12 y+27$
D. $3 y+27$

0 Five=Minute CHECK (over Lesson 1-4)

Standardized Test Practice

(6) Rewrite $(3+n)+7$ using the Associative Property.

$$
\text { A. }(n+3)+7
$$

0%
B. $(3+7)+n$
C. $7+(3+n)$
D. $3+(n+7)$

(1) Which value is the solution of $5-x=2$?
(A.) 3
B. 5
C. 7
D. none of the above

(2) Which value is the solution of $7 n=42$?
A. 8
B. 7
0%

(C.) 6
D. none of the above
(3) Which value is the solution of $\frac{85}{b}=5$?
A. 15

0\%
B. 17
C. 19
D. none of the above

(4) Solve $25=5 x$ mentally.

B. 20
C. 30
D. 125

88/CheckPoint
$\stackrel{1}{ }$

(5) Solve $19-w=5$ mentally.
A. -24
B. -14

0\%

C. 14
D. 24

The Tools of Algebra

(f) Fivo-Minuite CHECK (over Lesson 1-5)

Standardized Test Practice
(6) Which value of x makes the equation $3 x-2=7$ true?
A. 9

0\%
B. 6
C. 4
D. 3
$\square A \square B \square C \square D$
$88 /$ CheckPoint
FFF
(f) Fivo-Minute CHECK (over Lesson 1-6)
(1) Name the point which corresponds to the ordered pair $(2,5)$ in the graph.
A. V

B. U
C. T
(D. \boldsymbol{P}

(F) Fivo-Minute CHECK (over Lesson 1-6)
(2) Name the point which corresponds to the ordered pair $(4,3)$ in the graph.

A. \boldsymbol{Q}

(B.) R

$$
0 \%
$$

C. S
D. V
F) Fivo-Minute CHECK (over Lesson 1-6)
(3) Find the ordered pair that names the point Q in the graph.
A. $(2,3)$

-8	\boldsymbol{y}								
-7									
-6				U					
-5		P							
-4							T		
-3		V							
-2					R				
1			Q						
\mathbf{O}					S				
\mathbf{O}	1	2	3	4	5	6	7	8	\boldsymbol{x}

B. $(3,2)$

0\%
C. $(3,3)$
D. $(4,3)$
F) Fivo-Minute CHECK (over Lesson 1-6)
(4) Find the ordered pair that names the point T in the graph.
(A.) $(6,4)$

B. $(4,6)$
C. $(4,3)$
D. $(3,6)$

Five-Minute CHECK

(over Lesson 1-6)
(5) Determine the domain (D) and the range (R) of the relation in the graph.
A.
$\mathrm{D}=\{0,2,3,4,5,6\}$
$\mathrm{R}=\{1,2,3,4,6\}$

B. $D=\{1,2,3,4,5,6\}$
$R=\{1,2,3,4,6\}$
C. $D=\{1,2,3,4,5,6\}$
$R=\{0,1,2,3,4,5,6\}$
(D.) $\mathrm{D}=\{1,2,3,4,6\}$
$R=\{0,2,3,4,5,6\}$

The Tools of Algebra

Prvo-Minute CHECK (over Lesson 1-6)
Standardized Test Practice
(6) What point lies on both the x-axis and the y-axis?
A. $(1,1)$

0\%
B. $(0,1)$
(C. $(0,0)$
D. $(1,0)$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$

