Interactive Classroom

Chapter 1 The Tools of Algebra

Click the mouse button or press the space bar to continue.

edra

Copyright © by The McGraw-Hill Companies, Inc.

The Tools of Algebra

Chapter Menu

Lesson 1-1 Using a Problem-Solving Plan

- Lesson 1-2 Numbers and Expressions
- Lesson 1-3 Variables and Expressions
- Lesson 1-4 Properties
- **Lesson 1-5** Variables and Equations
- **Lesson 1-6** Ordered Pairs and Relations
- Lesson 1-7 Scatter Plots

hapter RESOURCES

EXIT

Lesson Menu

Five-Minute Check

Main Ideas and Vocabulary

Example 1: Real-World Example

Example 2: Use Inductive Reasoning to Solve Problems

Example 3: Real-World Example

Main Ideas

- Use a four-step plan to solve problems.
- Choose an appropriate method of computation.

Chapter RESOURCES

New Vocabulary

- conjecture
- inductive reasoning

Real-World EXAMPLE

PIZZA The price of a large cheese pizza at Paul's Pizza Place is \$9.25. You receive a \$0.50 discount for each additional pizza ordered, up to 10. So, one pizza costs \$9.25, two pizzas cost \$8.75 each, three pizzas cost \$8.25 each, and so on. If you need 8 pizzas for a party, what is the cost per pizza?

- **Explore** The problem gives the cost for the first pizza and the discount for each additional pizza ordered. We need to find the cost per pizza for an order of 8 pizzas.
- Plan Use the information given to solve the problem. Look for a pattern in the costs. Extend the pattern to find the cost per pizza for an order of 8 pizzas.

Chapter RESOURCES

Real-World EXAMPLE

Solve First, find the pattern.

- 1 pizza costs \$9.25.
- 2 pizzas cost \$9.25 \$0.50 or \$8.75 each.
- 3 pizzas cost \$8.75 \$0.50 or \$8.25 each.

Now, extend the pattern.

- 4 pizzas cost \$8.25 \$0.50 or \$7.75 each.
- 5 pizzas cost \$7.75 \$0.50 or \$7.25 each.
- 6 pizzas cost \$7.25 \$0.50 or \$6.75 each.
- 7 pizzas cost \$6.75 \$0.50 or \$6.25 each.
- 8 pizzas cost \$6.25 \$0.50 or \$5.75 each.

RESOURCES

Answer: The cost per pizza for an order of 8 pizzas would be \$5.75.

Examine It costs \$9.25 for one pizza with a discount of \$0.50 for each additional pizza ordered. For an order of 8 pizzas, the cost per pizza would be \$9.25 – (7 × \$0.50) or \$9.25 – \$3.50 = \$5.75.

Using a Problem-Solving Plan

MOVIE RENTAL The cost of renting movies at Mike's Marvelous Movie House is advertised as \$5 for the first movie and \$3.50 for each additional movie. Find the cost of renting 6 movies.

0%

0

0%

Chapter RESOURCES 0%

0%

A. \$21.00

B. \$26.00

EXAMPLE

Use Inductive Reasoning to Solve Problems

A. Find the next term in 1, 4, 16, 64, 256,

Answer: Assuming the pattern continues, the next term is 256 × 4 or 1024.

Chapter RESOURCES

EXAMPLE Use Inductive Reasoning to Solve Problems

B. Draw the next figure in the pattern.

Answer:

The shaded point on the triangle moves in the following pattern: right, top, bottom, left, right. Assuming the pattern continues, the shaded point will be located on the top in the next figure.

> Chapter RESOURCES

Real-World EXAMPLE

3 PLANETS The chart shows the distance of selected planets from the Sun. About how much farther is it from Earth to the Sun than from Mercury to the Sun?

Planet	Distance from Sun (millions of miles)
Mercury	36.0
Venus	67.24
Earth	92.9
Mars	141.71

Real-World EXAMPLE

- Sector Explore You know the distance from Earth to the Sun and the distance from Mercury to the Sun. You need to find about how much farther it is from Earth to the Sun than from Mercury to the Sun.
 - Plan The question uses the word *about*, so an exact answer is not needed. We can solve the problem using estimation. Estimate each distance and then subtract.
 - **Solve** Distance from Earth to the Sun: $92.9 \rightarrow 93$ Distance from Mercury to the Sun: $36.0 \rightarrow 36$

Examine Since 36 + 57 = 93, the answer makes sense.

Using a Problem-Solving Plan

CHECK Your Progress

SCHOOL ENROLLMENT East Elementary School has 792 students enrolled. West Elementary School has 518 students enrolled. About how many more students does East Elementary have than West Elementary?

- **C.** 200
- **D.** 150

0%

🗖 A 🗖 B 🗖 C 🗖 D

Chapter RESOURCES

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

-2

Five-Minute Check (over Lesson 1-1)

Main Ideas and Vocabulary

Concept Summary: Order of Operations

Example 1: Evaluate Expressions

Example 2: Translate Phrases into Expressions

Example 3: Real-World Example

Main Ideas

- Use the order of operations to evaluate expressions.
- Translate verbal phrases into numerical expressions.

Chapter RESOURCES

New Vocabulary

- numerical expression
- evaluate
- order of operations

CONCEPT SUMMARY

Order of Operations

- **Step 1** Evaluate the expressions inside grouping symbols.
- Step 2 Multiply and/or divide in order from left to right.
- Step 3 Add and/or subtract in order from left to right.

EXAMPLE Evaluate Expressions

$\mathbf{O} \quad \mathbf{A. Find the value of } \mathbf{24} \div \mathbf{8} \times \mathbf{3.}$

 $24 \div 8 \times 3 = 3 \times 3$ Divide 24 by 8.

= 9 Multiply 3 and 3.

Chapter RESOURCES

 $\leftarrow \rightarrow$

EXAMPLE Evaluate Expressions

B. Find the value of $5(4 + 6) - 7 \cdot 7$.

 $5(4+6) - 7 \cdot 7 = 5(10) - 7 \cdot 7$ Evaluate (4+6).

- = 50 7•7 5(10) means 5 × 10.
- = 50 49 7

7 • 7 means 7 times 7.

Chapter RESOURCES

= 1 Subtract 49 from 50.

-2

EXAMPLE Evaluate Expressions

C. Find the value of 3[(18 – 6) + 2(4)].

$$3[(18-6)+2(4)] = 3[12+2(4)]$$
 Evaluate (18-6).

$$= 3(12 + 8)$$
 Multiply 2 and 4.

$$= 3(20)$$
 Add 12 and 8.

Chapter RESOURCES $\langle - - \rangle$

EXAMPLE Evaluate Expressions

D. Find the value of $\frac{49+31}{19-14}$. $\frac{49+31}{19-14} = (49+31) \div (19-14)$ $= 80 \div 5$

Rewrite as a division expression.

Evaluate (49 + 31)and (19 - 14).

=16

Divide 80 by 5.

Chapter RESOURCES

EXAMPLE Translate Phrases into Expressions

Chapter RESOURCES

A. Write a numerical expression for the verbal phrase.

- Phrasethe quotient of eighteen and sixKey Wordquotient
- **Expression** 18 ÷ 6

Answer: 18 ÷ 6

EXAMPLE Translate Phrases into Expressions

Chapter RESOURCES

B. Write a numerical expression for the verbal phrase.

- Phrase the sum of nine and five
- Key Word sum
- **Expression** 9 + 5

Answer: 9 + 5

Real-World EXAMPLE

3 EARNINGS Madison earns an allowance of \$5 per week. She also earns \$4 per hour babysitting, and usually baby-sits 6 hours each week. Write and evaluate an expression for the total amount of money she earns in one week.

Words\$5 allowanceplus\$4 per hourper weekspent baby-sitting.

╇

4 × 6

Answer: Madison earns \$29 in one week.

Numbers and Expressions

CHECK Your Progress

3 SHOPPING The Good Price Grocery Store advertises a special on 2-liter bottles of soft drinks. The first bottle purchased is \$1.50 and each bottle after that is \$1.20. Write and evaluate an expression for the total cost when 8 bottles are purchased.

A.
$$1.50 + 8(1.20) = 11.10$$

C.
$$2 + 1.50 + 1.20 + 8 = 12.70$$

D.
$$1.20 + 7(1.50) = 11.70$$

🗖 A 🗖 B 🗖 C 🗖 D

Chapter RESOURCES 0%

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 1-2)

Main Ideas and Vocabulary

Example 1: Evaluate Expressions

Example 2: Evaluate Expressions

Example 3: Translate Verbal Phrases into Expressions

Example 4: Real-World Example

Main Ideas

• Evaluate expressions containing variables.

Chapter RESOURCES

• Translate verbal phrases into algebraic expressions.

New Vocabulary

- algebra
- variable
- algebraic expression
- defining a variable

EXAMPLE Evaluate Expressions

$\bigcirc Evaluate x - y + 6 if x = 27 and y = 12.$

x - y + 6 = 27 - 12 + 6 Replace x with 27 and y with 12.

Chapter RESOURCES

= 15 + 6 Subtract 12 from 27.

= 21 Add 15 and 6.

Answer: 21

EXAMPLE Evaluate Expressions

2 A. Evaluate 6y - 4x if x = 3, y = 4, and z = 7.

6y - 4x = 6(4) - 4(3) Replace y with 4 and x with 3.

Chapter RESOURCES

= 24 - 12 Multiply.

= 12 Subtract.

Answer: 12

EXAMPLE Evaluate Expressions

2 B. Evaluate
$$\frac{(z-x)}{y}$$
 if $x = 3$, $y = 4$, and $z = 7$.
 $\frac{(z-x)}{y} = (z-x) \div y$ Rewrite as a division expression.
 $= (7-3) \div 4$ Replace z with 7, x with 3, and
y with 4.
 $= 4 \div 4$ Subtract.
 $= 1$ Divide.
Answer: 1

┢┝←→

Chapter RESOURCES

-3

EXAMPLE Evaluate Expressions

2 C. Evaluate 5z + (x + 4y) - 15 if x = 3, y = 4, and z = 7

$$5z + (x + 4y) - 15 = 5(7) + (3 + 4 \bullet 4) - 15$$
 Replace z with
7, x with 3,
and y with 4.

$$= 5(7) + (3 + 16) - 15$$

= 5(7) + 19 - 15

Multiply 4 and 4.

Chapter RESOURCES Add 3 and 16.

2

= 35 + 19 – 15 Multiply 5 and 7.

Chapter RESOURCES

Answer: 39

EXAMPLE Translate Verbal Phrases into Expressions

RESOURCES

A. Translate the phrase 35 more than the number of tickets sold into an algebraic expression.

Words 35 more than the number of tickets sold.

Variable Let *t* represent the number of tickets sold.

35 more than the number of tickets sold Expression 35 + t

Answer: The expression is 35 + t.

EXAMPLE Translate Verbal Phrases into Expressions

- B. Translate the phrase *the difference of six times a number and ten* into an algebraic expression.
 - Words the difference of six times a number and ten.
 - Variable Let *n* represent the number.
 - the difference of six times a number and ten

RESOURCES

Answer: The expression is 6n - 10.

0%

kPoint

Real-World EXAMPLE

Expression

- A. THEATER East Middle School sold tickets for a school play. The price of an adult ticket was \$3, and the price of a student ticket was \$1. Write an expression that represents the total amount of money collected.
 - Words \$3 for an adult ticket and \$1 for a student ticket.
 - Variable Let *a* = number of adult tickets and *s* = number of student tickets.

3a

\$3 for an adult ticket and \$1 for a student ticket

RESOURCES

1s

Variables and Expressions

Answer: The expression 3a + 1s can be used to find the total amount of money collected.

Real-World EXAMPLE

B. THEATER East Middle School sold tickets for a school play. The price of an adult ticket was \$3 and the price of a student ticket was \$1. Suppose 70 adult tickets and 85 student tickets were sold. How much money was collected?

3a + 1s = 3(70) + 1(85) Replace *a* with 70 and *s* with 85. = 210 + 85 Multiply. = 295 Add.

> Chapter RESOURCES

Answer: The amount of money collected was \$295.

Variables and Expressions

- A. RETAIL The Read It Bookstore is advertising a sale. The price of hardback books is \$9.50 and the price of paperback books is \$4.50. Write an expression that can be used to find the total amount of money spent at the bookstore.
 - A. 9.5 + 4.5
 - **B.** (9.5 + 4.5)*hp*
 - C. h + p
 - <mark>D.</mark> 9.5h + 4.5p

Variables and Expressions

B. RETAIL The Read It Bookstore is advertising a sale. The price of hardback books is \$9.50 and the price of paperback books is \$4.50. Suppose Emily buys 5 hardback books and 4 paperback books. Find the total amount she spent at the book sale.

A. \$85.50

- **C.** \$60.50
- **D.** \$126.00

Chapter RESOURCES

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Properties

Five-Minute Check (over Lesson 1-3)

Main Ideas and Vocabulary

Key Concept: Commutative Property of Addition

Key Concept: Commutative Property of Multiplication

Key Concept: Associative Property of Addition

Key Concept: Associative Property of Multiplication

Chapter RESOURCES

Key Concept: Properties of Numbers

Example 1: Identify Properties

Example 2: Mental Math

Example 3: Find a Counterexample

Example 4: Simplify Algebraic Expressions

Main Ideas

Properties

- Identify and use properties of addition and multiplication.
- Use properties of addition and multiplication to simplify algebraic expressions.

Chapter RESOURCES

New Vocabulary

- properties
- counterexample
- simplify
- deductive reasoning

KEY	CO	NC	EPT
	001		

Properties

-4

Commutative Property of Addition

Chapter RESOURCES

ine

Words	The order in which numbers are added does not change the sum.		
Symbols	For any numbers a and b , $a + b = b + a$.		
Example	2 + 3 = 3 + 2 5 = 5		
	5 = 5		

KEY CO	NCEPT Commutative Property of Multiplication		
Words	The order in which numbers are multiplied does not change the product.		
Symbols	For any numbers a and b , $a \cdot b = b \cdot a$.		
Example	$2 \cdot 3 = 3 \cdot 2$ 6 = 6		

Properties

1-4

Math

KEY C	ONCEPT Associative Property of Addition		
Words	The way in which numbers are grouped when added does not change the sum.		
Symbols	For any numbers a , b , and c , $(a + b) + c = a + (b + c)$.		
Example	(5 + 8) + 2 = 5 + (8 + 2) 13 + 2 = 5 + 10 15 = 15		

Math

Chapter RESOURCES

Properties

1-4

KEY CONCEPT

Properties

Associative Property of Multiplication

Chapter RESOURCES

- Words The way in which numbers are grouped when multiplied does not change the product.
- **Symbols** For any numbers *a*, *b*, and *c*, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- Example $(4 \cdot 6) \cdot 3 = 4 \cdot (6 \cdot 3)$ $24 \cdot 3 = 4 \cdot 18$ 72 = 72

KEY CONCEPT Properties of Number				
Property	Words	Symbols	Examples	
Additive Identity	When 0 is added to any number, the sum is the number.	For any number a, a + 0 = 0 + a = a.	5 + 0 = 5 0 + 9 = 9	
Multiplicative Identity	When any number is multiplied by 1, the product is the number.	For any number a, $a \cdot 1 = 1 \cdot a = a$.	$7 \cdot 1 = 7$ $1 \cdot 6 = 6$	
Multiplicative Property of Zero	When any number is multiplied by 0, the product is 0.	For any number a, $a \cdot 0 = 0 \cdot a = 0$.	$\begin{array}{l} 4 \cdot 0 = 0 \\ 0 \cdot 2 = 0 \end{array}$	

Math

Properties

1-4

Chapter RESOURCES

B. Name the property shown by the statement.

```
(2 + 5) + m = 2 + (5 + m)
```

Answer: The grouping of the numbers and variables changed. This is the Associative Property of Addition.

D. Multiplicative Property of Zero

EXAMPLE Mental Math

Pind (18 • 20) • 5 mentally.

Group 20 and 5 together because $20 \bullet 5 = 100$. It is easy to multiply by 100 mentally.

$$(18 \bullet 20) \bullet 5 = 18 \bullet (20 \bullet 5)$$

= 1800

Associative Property of Multiplication

Multiply 20 and 5 mentally.

Chapter RESOURCES

Multiply 18 and 100 mentally.

Answer: 1800

EXAMPLE Find a Counterexample

Properties

State whether the following conjecture is true or false. If false, provide a counterexample.

Division of whole numbers is commutative

Write two division expressions using the Commutative Property, and then check to see whether they are equal.

12 ÷ 6 $\stackrel{?}{=}$ 6 ÷ 12 State the conjecture.

 $2 \neq 0.5$ Divide.

We found a counterexample. That is, $12 \div 6 \neq 6 \div 12$. So, division is not commutative.

> Chapter RESOURCES

Answer: The conjecture is false.

State whether the following conjecture is true or false. If false, provide a counterexample. *Subtraction of whole number is commutative*

A. true

B. false,
$$7 - 4 = 7 - 4$$

D. false,
$$(7 - 4) - 2 \neq 7 - (4 - 2)$$

0%

Chapter RESOURCES

④ A. Simplify 5 ● (3 ● r).

Properties

$$5 \bullet (3 \bullet r) = (5 \bullet 3)r$$

= 15*r*

Associative Property of Multiplication

> Chapter RESOURCES

Substitution Property of Equality;
$$5 \bullet 3 = 15$$

Answer: 15*r*

B. Simplify 12 + (x + 18).

Properties

- 12 + (x + 18) = 12 + (18 + x)
- Commutative Property of Addition
- Associative Property of Addition

$$= 30 + x$$

=(12+18)+x

Substitution Property of Equality; 12 + 18 = 30

Chapter RESOURCES

Answer: 30 + *x*

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 1-4)

Main Ideas and Vocabulary

Example 1: Solve an Equation

Example 2: Standardized Test Example

Example 3: Translate Sentences into Equations

Example 4: Real-World Example

Main Ideas

- Identify and solve open sentences.
- Translate verbal sentences into equations.

Chapter RESOURCES

New Vocabulary

- equation
- open sentence
- solution
- solving the equation

Variables and Equations

EXAMPLE Solve an Equation

(1) Find the solution of 44 + p = 53. Is it 11, 9, or 7?

Replace *p* with each value.

Value for <i>p</i>	44 + p = 53	True or False?
11	44 + 11 ² 53	false
9	44 + 9 ² = 53	true 🗸
7	44 + 7 [?] = 53	false

Answer: Therefore, the solution of 44 + p is 9.

Answer: Since 3 makes the equation true, the answer is C.

EXAMPLE Translate Sentences into Equations

3 The quotient of a number and four is nine. Find the number.

Words The quotient of a number and four is nine.

Variable Let n = the number.

Answer: 36

Real-World EXAMPLE

A. MAPLE SYRUP It takes about 45 gallons of tree sap to make about 1 gallon of maple syrup. The table shows the relationship between the number of gallons of tree sap and the number of gallons of maple syrup. Given *t*, the number of gallons of tree sap used, write an equation to find *m*, the number of gallons of maple syrup.

Gallons of Tree Sap, <i>t</i>	Gallons of Maple Syrup, <i>m</i>
45	1
90	2
135	3
180	4

Real-World EXAMPLE

Variable

Words

Let t = number of gallons of tree sap. Let m = number of gallons of maple syrup.

Chapter RESOURCES

Equation t = 45m

Answer: *t* = 45*m*

Variables and Equations

B. How many gallons of tree sap are needed to make 5 gallons of maple syrup?

- t = 45m Write the equation.
- t = 45(5) Replace *m* with 5.
- t = 225 Multiply.

Answer: 225 gallons

Variables and Equations

PETS The light in a salt water aquarium should provide about 5 watts per gallon of water to allow for photosynthesis. Given *g* gallons of water, write an equation to find *w* the number of watts required. Then find the number of watts required for a 55-gallon aquarium.

C. w = 5g; 11 watts

Chapter RESOURCES 0%

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

-6

Five-Minute Check (over Lesson 1-5)

Main Ideas and Vocabulary

Example 1: Graph Ordered Pairs

Example 2: Identify Ordered Pairs

Example 3: Relations as Tables and Graphs

Example 4: Real-World Example

Main Ideas

-6

- Use ordered pairs to locate points. •
- Use tables and graphs to represent relations. •

New Vocabulary

- coordinate system x-coordinate
- y-axis
- coordinate plane
- origin
- x-axis
- ordered pair

- y-coordinate •

- graph •
- relation
- domain
- range

EXAMPLE Graph Ordered Pairs

A. Graph the ordered pair (3, 4) on a coordinate system.

- **Step 1** Start at the origin.
- **Answer:**

- Step 2 Since the *x*-coordinate is 3, move 3 units to the right.
- Step 3Since the y-coordinateis 4, move 4 units up.Draw a dot.

EXAMPLE Graph Ordered Pairs

B. Graph the ordered pair (0, 2) on a coordinate system.

- **Step 1** Start at the origin.
- Step 2 Since the x-coordinate is 0, you will not need to move to the right.
- Step 3Since the y-coordinateis 2, move 2 units up.Draw a dot.

2 3

0

1

4

567×

0%

C

0%

0

eckPoint

EXAMPLE Identify Ordered Pairs

A. Write the ordered pair that names point G.

- **Step 1** Start at the origin.
- **Step 2** Move right on the *x*-axis to find the *x*-coordinate of point *G*, which is 1.
- **Step 3** Move up the *y*-axis to find the *y*-coordinate, which is 1.

Chapter RESOURCES

Answer: The ordered pair for G is (1, 1).

EXAMPLE Identify Ordered Pairs

B. Write the ordered pair that names point *H*.

- **Step 1** Start at the origin.
- **Step 2** Move right on the *x*-axis to find the *x*-coordinate of point *H*, which is 4.
- Step 3 Since the *y*-coordinate is zero, you will not need to move up.

Chapter RESOURCES

Answer: The ordered pair for H is (4, 0).

EXAMPLE Relations as Tables and Graphs

Express the relation {(1, 4), (2, 2), (3, 0), (0, 2)} as a table and as a graph. Then determine the domain and range.

Answer:

The domain is {0,1, 2, 3}. The range is {0, 2, 4}.

CHECK Your Progress

Express the relation {(4, 1), (3, 2), (0, 1), (2, 3)} as a table and as a graph. Then determine the domain and range.

A.
$$D = \{1, 2, 3\},$$

 $R = \{4, 3, 0, 2\}$
B. $D = \{4, 3, 0, 2\}$
 $R = \{1, 2, 3\},$
C. $D = \{4, 3, 2\},$
 $R = \{1, 2, 3\},$
D. $D = \{1, 2, 3\},$
 $R = \{4, 3, 2\}$

🗖 A 🗆 B 🗖 C 🗖 D

Real-World EXAMPLE

EARNINGS Austin earns \$5 an hour doing yard work. Suppose x represents the number of hours Austin works.

A. Make a table of ordered pairs in which the *x*-coordinate represents the hours worked and *y* represents the amount of money Austin earns for 1, 2, 3, 4, and 5 hours of work.

Answer:

X	y	(<i>x</i> , <i>y</i>)
1	5	(1, 5)
2	10	(2, 10)
3	15	(3, 15)
4	20	(4, 20)
5	25	(5, 25)

Real-World EXAMPLE

EARNINGS Austin earns \$5 an hour doing yard work. Suppose x represents the number of hours Austin works.

B. Graph the ordered pairs.

X	y	(<i>x</i> , <i>y</i>)
1	5	(1, 5)
2	10	(2, 10)
3	15	(3, 15)
4	20	(4, 20)
5	25	(5, 25)

Answer:

Real-World EXAMPLE

EARNINGS Austin earns \$5 an hour doing yard work. Suppose x represents the number of hours Austin works.

C. Describe the graph.

Answer: The points appear to lie on a line.

Chapter RESOURCES

CHECK Your Progress

(x, y)

(1, 3)

(2, 4)

(3, 5)

(4, 6)

(5, 7)

(x, y)(1, 2)

(2, 4)

(3, 6)

(4, 8)

(5, 10)

3

4

5

6

7

2

4

6

8

10

4

5

2

3

4

5

BAKING Sue is following a recipe for cookies which requires 2 cups of sugar for each batch of cookies made. Suppose x represents the number of batches made.

A. Make a table of ordered pairs in which the x-coordinate represents the number of batches made and y represents the number of cups of sugar needed for 1, 2, 3, 4, and 5 batches made.

Α.	X
	1
	2
	3

B .	X	y	(<i>x</i> , <i>y</i>)
	1	2	(1, 2)
	2	2	(2, 2)
	3	2	(3, 2)
	4	2	(4, 2)
	5	2	(5, 2)

λ	y	(\mathbf{A}, \mathbf{Y})
1	0	(1, 0)
2	2	(2, 2)
3	4	(3, 4)
4	6	(4, 6)
5	8	(5, 8)

Chapter RESOURCES

1/ /2 1/

CHECK Your Progress

BAKING Sue is following a recipe for cookies which requires 2 cups of sugar for each batch of cookies made. Suppose *x* represents the number of batches made.
 B. Graph the ordered pairs.

HECK Your Progress

BAKING Sue is following a recipe for cookies which requires 2 cups of sugar for each batch of cookies made. Suppose *x* represents the number of batches made.

- **C.** Describe the graph.
- A. The points appear to fall in a line slanting upward to the right.
- B. The points appear to fall randomly.
- C. The points appear to fall in a line slanting downward to the right.
- **D.** none of the above

Chapter

RESOURCES

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 1-6)

Main Ideas and Vocabulary

Example 1: Construct a Scatter Plot

Key Concept: Types of Relationships

Example 2: Interpret Scatter Plots

Example 3: Real-World Example

- Construct scatter plots.
- Analyze trends in scatter plots.

Chapter RESOURCES

New Vocabulary

scatter plot

EXAMPLE Construct a Scatter Plot

BREAD The table shows the average cost of a loaf of bread from 1920–2000. Make a scatter plot of the data.

Year	1920	1930	1940
Cents	12	9	8
Year	1950	1960	1970
Cents	14	20	24
	1000	1000	2000
Year	1980	1990	2000
Cents	52	72	99

Scatter Plots

Chapter RESOURCES

Let the horizontal axis, or *x*-axis, represent the year. Let the vertical axis, or *y*-axis, represent the cost.

EXAMPLE Construct a Scatter Plot

BREAD The table shows the average cost of a loaf of bread from 1920–2000. Make a scatter plot of the data.

Year	1920	1930	1940
Cents	12	9	8
Year	1950	1960	1970
Cents	14	20	24
	1000	1000	2000

Scatter Plots

Year	1980	1990	2000
Cents	52	72	99

Answer:

Chapter RESOURCES

Then graph ordered pairs (years, cost).

BIRTH STATISTICS The table shows the number of babies born at Central Hospital during the past eight months. Make a scatter plot of the data.

Month	Jan.	Feb.	Mar.	Apr.
Number of Babies	12	21	17	9
Month	May	June	July	Aug.

-7

EXAMPLE Interpret a Scatter Plot

Determine whether a scatter plot of the height of basketball player and number of rebounds might show a *positive, negative,* or *no* relationship. Explain your answer.

Scatter Plots

As the height increases, the number of rebounds increases.

Chapter RESOURCES

66 68 70 72 74 Height (in.)

Answer: positive relationship

CHECK Your Progress

Determine whether a scatter plot of the outside temperature and the heating bill might show a *positive, negative,* or *no* relationship. Explain your answer.

- As the outside temperature decreases, the heating bill will increase. This is a negative relationship.
- B. As the outside temperature decreases, the heating bill will increase. This is a positive relationship.
- C. As the outside temperature increases, the heating bill will increase. This is a negative relationship.
- D. Outside temperature and heating bill have no relationship.

0%

Chapter

RESOURCES

3 A. TEMPERATURE The table shows temperatures in degrees Celsius and the corresponding temperatures in degrees Fahrenheit. Make a scatter plot of the data.

Chapter RESOURCES

Let the vertical axis represent degrees Fahrenheit. Graph the data.

B. Does the scatter plot show a relationship between °C and °F? Explain.

Chapter RESOURCES

Answer: Yes, a positive relationship is shown. As °C increase, so do °F.

O C. Predict the Fahrenheit temperature for 35 °C.

Answer: By looking at the pattern on the graph, we can predict that the Fahrenheit temperature corresponding to 35°C would be about 95 degrees.

Chapter RESOURCES

┢┝

Hours	3	2	5	1
Score	72	75	90	68

Hours	4	2	6
Score	85	70	92

0%

Chapter RESOURCES

B. STUDY SKILLS The table shows hours spent studying for a test and the corresponding test score. Does the scatter plot show a relationship between hours studied and a student's test score?

- Yes, a positive relationship exists.
- B. Yes, a negative relationship exists.
- C. No, no relationship exists.
- D. none of the above

Hours	3	2	5	1
Score	72	75	90	68

0%

Chapter

RESOURCES

- 3 C. STUDY SKILLS The table shows hours spent studying for a test and the corresponding test score. Predict the test score for a student who spends 7 hours studying.
 - A. between 65 and 70
 - B. between 75 and 80
 - C.
- between 95 and 100
- D. between 105 and 110

Hours	3	2	5	1
Score	72	75	90	68

0%

Chapter

RESOURCES

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

The Tools of Algebra

Chapter Resources Menu

CheckPoint Five-Minute Checks

Image Bank

C^Oncepts in MOtion

Animation Ordered Pairs and Relations

Spreadsheets

The Tools of Algebra

Five-Minute CHECK

CHAPTED

Lesson 1-1

- Lesson 1-2 (over Lesson 1-1)
- Lesson 1-3 (over Lesson 1-2)
- Lesson 1-4 (over Lesson 1-3)
- Lesson 1-5 (over Lesson 1-4)
- Lesson 1-6 (over Lesson 1-5)
- Lesson 1-7 (over Lesson 1-6)

HAPTED

To use the images that are on the following three slides in your own presentation:

- **1.** Exit this presentation.
- 2. Open a chapter presentation using a full installation of Microsoft[®] PowerPoint[®] in editing mode and scroll to the Image Bank slides.
- **3.** Select an image, copy it, and paste it into your presentation.

Standardized Test Practice

- **6** The sales figures for a business for the months in the first quarter are shown in the table. What were the total sales for the first quarter?
 - **A.** \$12,000
 - **B.** \$17,000
 - **C.** \$27,000

Month	Sales
January	\$12,000
February	\$15,000
March	\$10,000

0%

🗖 A 🗖 B 🗖 C 🗖 D

1 Ken uses $\frac{1}{2}$ cup of cat food each day for his cat. If there are $10\frac{1}{2}$ cups left in the bag, how long will the cat food last? Use the four-step problem

solving plan to solve.

- **A.** 10 days
- **B.** 11 days
- C) 21 days
- **D.** 22 days

0%

Using six coins, how can you make change for 95 cents that will not make change for a quarter? Use the four-step problem-solving plan to solve.

- A. 3 quarters, 3 nickels, 1 dime
- **B.** 3 quarters, 2 nickels, 1 dime
- C. 3 quarters, 1 nickel, 2 dimes
- **D.** 3 quarters, 1 nickel, 1 dime

B Ron plans to add 3 books to his science fiction collection every month. If he has 18 science fiction books now, how many will he have in one year?

Write a numerical expression for the verbal phrase: thirteen more than eight.

B. 8 – 13

C. 13 ÷ 8

D. 13 × 8

Write a numerical expression for the verbal phrase: thirty-six divided by two.

- **A.** 36 × 2
- **B.** 36 + 2

■ A □ B ■ C ■ D

0%

ଚ

0%

8

0%

C

0%

0

ckPoint

A. 3b

B. b + 3

C. 3 - b

D.)

b – 3

I Translate the phrase into an algebraic expression. *eight more than three times a number*

- **B.** 8*n* + 3
- **C.** 3(*n* + 8)
- **D.** 11*n*

🗖 A 🗖 B 🗖 C 🗖 D

6 Which expression represents three less than four times a number?

A. 3 – 4*n*

C.
$$4(n-3)$$

Name the property shown by the statement (4b)c = 4(bc).

Associative Property of Multiplication

- **B.** Commutative Property of Multiplication
- C. Distributive Property of Multiplication
- **D.** Multiplicative Identity

- Name the property shown by the statement 4y + 0 = 4y.
 - A. Additive Inverse

- **Additive Identity**
- **C.** Multiplicative Identity
- D. Multiplicative Property of Zero

(over Lesson 1-6)

- Name the point which corresponds to the ordered pair (2, 5) in the graph.
 - **A.** *V*
 - **B.** *U*
 - **C.** *T*

(over Lesson 1-6)

0%

Name the point which corresponds to the ordered pair (4, 3) in the graph.

- Find the ordered pair that names the point Q in the graph.
 - **A.** (2, 3)
 - <mark>B.</mark> (3, 2)
 - **C**. (3, 3)
 - **D.** (4, 3)

0%

Find the ordered pair that names the point T in the graph.

- **B.** (4, 6)
- **C.** (4, 3)
- **D.** (3, 6)

U

R

S

5

6

Т

Ρ

V

Q

3

2

-8-

-7-

-6-

5

4

3-

2

0

8 X

The Tools of Algebra

CHAPTER

(over Lesson 1-6)

Determine the domain (D) and the range (R) of the relation in the graph.

ve-Minute CHECK

A.
$$D = \{0, 2, 3, 4, 5, 6\}$$

R = $\{1, 2, 3, 4, 6\}$

B.
$$D = \{1, 2, 3, 4, 5, 6\}$$

 $R = \{1, 2, 3, 4, 6\}$

C.
$$D = \{1, 2, 3, 4, 5, 6\}$$

R = $\{0, 1, 2, 3, 4, 5, 6\}$

D, $D = \{1, 2, 3, 4, 6\}$ $R = \{0, 2, 3, 4, 5, 6\}$

