Interactive Classroom

Chapter 2 Integers

Click the mouse button or press the space bar to continue.

eora

Copyright © by The McGraw-Hill Companies, Inc.

Chapter Menu

Integers

Lesson 2-1 Integers and Absolute Value

Lesson 2-2 Adding Integers

- Lesson 2-3 Subtracting Integers
- Lesson 2-4 Multiplying Integers
- Lesson 2-5 Dividing Integers
- Lesson 2-6 The Coordinate System

Chapter RESOURCES

Lesson Menu

Five-Minute Check (over Chapter 1)

Main Ideas and Vocabulary

Example 1: Write Integers for Real-World Situations

Example 2: Compare Two Integers

Example 3: Real-World Example

Key Concept: Absolute Value

Example 4: Expressions with Absolute Value

Example 5: Algebraic Expressions with Absolute Value

Chapter RESOURCES

Main Ideas

- Compare and order integers.
- Find the absolute value of an expression.

Chapter RESOURCES

New Vocabulary

- negative number
- integers
- coordinate
- inequality
- absolute value

EXAMPLE Write Integers for Real-World Situations

Write an integer for each situation.

- A. 32 feet underground -32
- **B. 8 weeks after birth** +8
- C. a loss of 6 pounds

-6

Chapter RESOURCES

EXAMPLE Compare Two Integers

A. Use the integers graphed on the number line below for each question. Write two inequalities involving 7 and –4.

Answer: Since 7 is to the right of -4, write 7 > -4. Since -4 is to the left of 7, write -4 < 7.

RESOURCES

EXAMPLE Compare Two Integers

B. Use the integers graphed on the number line below for each question. Replace the • with <, >, or = in -2 • 3 to make a true sentence.

RESOURCES

Answer: -2 is less since it lies to the left of 3. So write -2 < 3.

A. Use the integers graphed on the number line below for each question. Write two inequalities involving –4 and 1.

B.
$$-4 < 1, 1 < -4$$

C.
$$-4 > 1, 1 > -4$$

D.
$$-4 > 1, 1 < -4$$

0%

Chapter RESOURCES

CHECK Your Progress

B. Use the integers graphed on the number line below for each question. Replace the • with <, >, or = in 6 • -7 to make a true sentence.

Real-World EXAMPLE

WEATHER The high temperatures for the first seven days of January were -8°, 10°, 2°, -3°, -11°, 0°, and 1°. Order the temperatures from least to greatest.

Graph each integer on a number line.

Write the numbers as they appear from left to right. **Answer:** The temperatures –11°, –8°, –3°, 0°, 1°, 2°, 10° are in order from least to greatest.

KEY CONCEPT

Abolute Value

Words The absolute value of a number is the distance the number is from zero on the number line. The absolute value of a number is always greater than or equal to zero.

Examples |5| = 5 |-5| = 5

EXAMPLE Expressions with Absolute Value

A. Evaluate [5].

Chapter RESOURCES

|5| = 5 The graph of 5 is 5 units from 0. Answer: 5

EXAMPLE Expressions with Absolute Value

B. Evaluate |-8| + |-1|.

|-8| + |-1| = 8 + 1 The absolute value of -8 is 8. The absolute value of -1 is 1.

> Chapter RESOURCES

= 9 Simplify.

Answer: 9

2-1

EXAMPLE

Algebraic Expressions with Absolute Value

S ALGEBRA Evaluate |x| - 8 if x = -2.

$$|\mathbf{x}| - 8 = |-2| - 8$$
Replace x with -2. $= 2 - 8$ The absolute value of -2 is 2. $= -6$ Simplify.

Chapter RESOURCES

Answer: -6

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

2-2

Lesson Menu

Five-Minute Check (over Lesson 2-1)

Main Ideas and Vocabulary

Example 1: Add Integers on a Number Line

Key Concept: Adding Integers with the Same Sign

Example 2: Add Integers with the Same Sign

Example 3: Add Integers on a Number Line

Key Concept: Adding Integers with Different Signs

Chapter RESOURCES

Example 4: Add Integers with Different Signs

Example 5: Real-World Example

Key Concept: Additive Inverse Property

Example 6: Add Three or More Integers

Main Ideas

- Add two Integers.
- Add more than two integers.

Chapter RESOURCES

New Vocabulary

- opposites
- additive inverse

Move three units to the right.

From there, move four more units to the right.

Chapter RESOURCES

Answer: 3 + 4 = 7

KEY CONCEPT

2-7

Adding Integers with the Same Sign

Words To add integers with the same sign, add their absolute values. The sum is:

- positive if both integers are positive.
- negative if both integers are negative.

Examples -5 + (-2) = -7 6 + 3 = 9

-5 + (-4) = -9 Add |-5| and |-4|. Both numbers are negative, so the sum is negative.

Chapter RESOURCES

Answer: -9

Adding Integers

EXAMPLE Add Integers on a Number Line

Chapter RESOURCES

3 A. Find 7 + (–11).

Start at zero.

Move 7 units to the right.

From there, move 11 units to the left.

Answer: 7 + (-11) = -4

EXAMPLE Add Integers on a Number Line

B. Find –2 + 9.

Chapter RESOURCES

Start at zero.

Move 2 units to the left.

From there, move 9 units to the right.

Answer: -2 + 9 = 7

KEY CONCEPT

Adding Integers with Different Signs

To add integers with different signs, subtract their absolute values. The sum is:

- positive if the positive integer's absolute value is greater.
- negative if the negative integer's absolute value is greater.

-9 + 10 = 1

To find -9 + 10, subtract |9| from |10|. The sum is positive because |10| > |9|.

> Chapter RESOURCES

Answer: 1

8 + (-15) = -7 To find 8 + (-15), subtract |8| from |-15|. The sum is negative because |-15| > |8|.

Chapter RESOURCES

Answer: -7

-22 + 19 = x To find the sum, subtract [19] from [-22]. -3 = x The sum is negative because [-22] > [19].

Answer: The temperature at noon was –3°F.

D. 61 feet below sea level

	ling Integers	
	NICEDT	
KEY CO	ONCEPT	Additive Inverse Property
KEY CO Words		Additive Inverse Property er and its additive inverse is zero.

Chapter RESOURCES

Math

6

EXAMPLE Add Three or More Integers

6 A. Find –8 + (–4) + 8.

-8 + (-4) + 8 = -8 + 8 + (-4)= 0 + (-4)= -4

Commutative Property Additive Inverse Property Identity Property of Addition

> Chapter RESOURCES

Answer: –4

2-2

EXAMPLE Add Three or More Integers

6 B. Find 6 + (-3) + (-9) + 2.

$$6 + (-3) + (-9) + 2 = 6 + 2 + (-3) + (-9)$$
$$= [6 + 2] + [-3 + (-9)]$$
$$= 8 + (-12) \text{ or } -4$$

Commutative Property Associative Property Simplify.

Chapter RESOURCES

Answer: –4

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 2-2)

Main Ideas

Key Concept: Subtracting Integers

Example 1: Subtract a Positive Integer

Example 2: Subtract a Negative Integer

Example 3: Real-World Example

Example 4: Evaluate Algebraic Expressions

Main Ideas

- Subtract Integers.
- Evaluate expressions containing variables.

KEY CONCEPT

Subtracting Integers

Words To subtract an integer, add its additive inverse.

Symbols a-b=a+(-b)

EXAMPLE Subtract a Positive Integer

A. Find 9 – 14.

$$9 - 14 = 9 + (-14)$$
 To subtract 14, add -14.
= -5 Simplify.

Chapter RESOURCES

I ← ← →

EXAMPLE Subtract a Positive Integer

B. Find –10 – 8.

$$-10 - 8 = -10 + (-8)$$

= -18

To subtract 8, add –8. Simplify.

> Chapter RESOURCES

 $\leftarrow \rightarrow$

EXAMPLE Subtract a Negative Integer

2 A. Find 15 − (−4).

15 - (-4) = 15 + 4 To subtract -4, add 4. = 19 Simplify.

> Chapter RESOURCES

(=)

Answer: 19

2-3

EXAMPLE Subtract a Negative Integer

B. Find –11 – (–7).

$$-11 - (-7) = -11 + 7$$
 To subtract -7, add 7.
= -4 Simplify.

Chapter RESOURCES ┝╾╺╸→

Real-World EXAMPLE

WEATHER The table shows the record high and low temperatures recorded in selected states. What is the range of temperatures for West Virginia?

State	Lowest Temperature (°F)	Highest Temperature (°F)
Utah	-69	117
Vermont	-50	105
Virginia	-30	110
Washington	-48	118
West Virginia	-37	112

Source: The World Almanac

Real-World EXAMPLE

- Explore You know the highest and lowest temperatures. You need to find the range for West Virginia's temperatures.
 - Plan To find the range, or difference, subtract the lowest temperature from the highest temperature.

Solve

- 112 (-37) = 112 + 37 To subtract -37, add 37.
 - = 149 Add 112 and 37.

Chapter RESOURCES

Answer: The range for West Virginia is 149°F.

Real-World EXAMPLE

3 Examine

Think of a thermometer. The difference between 112° above zero and 37° below zero must be 112° + 37° or 149°. The answer appears to be reasonable.

WEATHER The table shows the record high and low temperatures recorded in selected states. What is the range for Washington?

0%

State	Lowest Temperature (°F)	Highest Temperature (°F)
Utah	-69	117
Vermont	-50	105
Virginia	-30	110
Washington	-48	118
West Virginia	-37	112

Source: The World Almanac

EXAMPLE Evaluate Algebraic Expressions

4 A. Evaluate m - (-2) if m = 4.

$$m - (-2) = 4 - (-2)$$

Write the expression. Replace *m* with 4.

> Chapter RESOURCES

= 4 + 2 To subtract -2, add 2.

$$= 6 \qquad Add 4 and 2.$$

Answer: 6

EXAMPLE Evaluate Algebraic Expressions

B. Evaluate x - y if x = -14 and y = -2.

$$x - y = -14 - (-2)$$

Write the expression. Replace x with -14 and y with -2.

Chapter RESOURCES

= -14 + 2 To subtract -2, add 2.

$$= -12$$
 Add -14 and 2.

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 2-3)

<u>Main Ideas</u>

Key Concept: Multiplying Integers with Different Signs

Example 1: Multiply Integers with Different Signs

Key Concept: Multiplying Integers with the Same Sign

Example 2: Multiply Integers with the Same Sign

Example 3: Standardized Test Example

Example 4: Simplify and Evaluate Algebraic Expressions

Main Ideas

- Multiply integers.
- Simplify algebraic expressions.

Multiplying Integers

KEY CONCEPT

Multiplying Integers with Different Signs

Words The product of two integers with different signs is negative.

Examples 4(-3) = -12 -3(4) = -12

Multiplying Integers

EXAMPLE Multiply Integers with Different Signs

A. Find 8(–9).

$$8(-9) = -72$$

The factors have different signs. The product is negative.

Chapter RESOURCES

Multiplying Integers

EXAMPLE Multiply Integers with Different Signs

B. Find –9(11).

$$-9(11) = -99$$

The factors have different signs. The product is negative.

Chapter RESOURCES

KEY CONCEPT

Multiplying Integers with the Same Sign

Words The product of two integers with the same sign is positive.

Examples 4(3) = 12 -4(-3) = 12

EXAMPLE Multiply Integers with the Same Sign

2 A. Find –4(–16).

$$-4(-16) = 64$$

The factors have the same sign. The product is positive.

Chapter RESOURCES

Answer: 64

EXAMPLE Multiply Integers with the Same Sign

B. Find –9(–3)(–2).

$$-9(-3)(-2) = [(-9)(-3)](-2)$$
$$= (27)(-2)$$
$$= -54$$

Associative Property (-9)(-3) = 27(27)(-2) = -54

> Chapter RESOURCES

(- -)

Answer: -54

Standardized Test EXAMPLE

A student missed only 4 problems on a test, each worth 20 points. What integer represents the total number of points earned for those questions?

A –5

- **B** –20
- **C** 24

D –80

Read the Test Item

The word *missed* means losing points, so the loss per problem is –20. Multiply 4 times –20 to find the total number of points lost.

Chapter RESOURCES

4(-20) = -80 The product is negative.

Answer: The answer is D.

Simplify and Evaluate Algebraic Expressions

A. Simplify 8a(-5b).

$$8a(-5b) = (8)(a)(-5)(b)$$

$$= (8 \bullet -5)(a \bullet b)$$

Commutative Property of Multiplication

$$(8 \bullet -5) = -40, a \bullet b = ab$$

Chapter RESOURCES

Answer: -40ab

EXAMPLE

B. Evaluate
$$-3xy$$
 if $x = -4$ and $y = 9$.

$$-3xy = -3(-4)(9)$$

= [-3(-4)](9)

= 12(9)

= 108

Replace x with -4 and y with 9.

Associative Property of Multiplication

The product of -3 and -4 is positive.

The product of 12 and 9 is positive.

Chapter RESOURCES

Answer: 108

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Five-Minute Check (over Lesson 2-4)

Main Ideas and Vocabulary

Key Concept: Dividing Integers with the Same Sign

Example 1: Divide Integers with the Same Sign

Key Concept: Dividing Integers with Different Signs

Chapter RESOURCES

Example 2: Divide Integers with Different Signs

Example 3: Evaluate Algebraic Expressions

Example 4: Real-World Example

Concept Summary: Operations with Integers

Main Ideas

- Divide Integers.
- Find the average of a set of data.

Chapter RESOURCES

New Vocabulary

• mean

KEY CONCEPT

Dividing Integers with the Same Sign

Words The quotient of two integers with the same sign is positive.

Examples $-12 \div (-3) = 4$ $12 \div 3 = 4$

Chapter RESOURCES

(- -)

Answer: 7

Chapter RESOURCES

(--)

Answer: 12

KEY CO	NCEPT	Dividing Integers with Different Signs
Words	The quotient of two integers with different signs is negative.	
Examples	$-12 \div 4 = -3$	$12 \div (-4) = -3$

Dividing Integers

2-5

Math

Chapter RESOURCES

 $54 \div (-3) = -18$ The quotient is negative.

Answer: -18

The quotient is negative.

Chapter RESOURCES

=-7 Simplify.

Answer: -7

3 Evaluate $6x \div y$, if x = -4 and y = -8.

 $6x \div y = 6(-4) \div (-8)$ Replace x with -4 and y with -8. = -24 ÷ (-8) Simplify. = 3

> Chapter RESOURCES

Answer: 3

Dividing Integers

Dividing Integers

EXAM SCORE Ian had exam scores of 89, 98, 96, 97, and 95. Find the mean (average) of his exam scores.

$$\frac{89+98+96+97+95}{5} = \frac{475}{5}$$

Find the sum of the quiz scores. Divide by the number in the set.

= 95 Simplify.

Answer: The average of Ian's exam scores is 95.

2-5

CONCEPT SUMMARY	Operations with Integers
Words	Examples
Adding Two Integers To add integers with the same sign, add their absolute values. Give the result the same sign as the integers.	-5 + (-4) = -9 $5 + 4 = 9$
To add integers with different signs, subtract their absolute values. Give the result the same sign as the integer with the greater absolute value.	-5+4=-1 $5+(-4)=1$
Subtracting Two Integers To subtract an integer, add its additive inverse.	5 - 9 = 5 + (-9) or $-45 - (-9) = 5 + 9$ or 14
Multiplying Two Integers The product of two integers with the same sign is positive. The product of two integers with different signs is negative.	$5 \cdot 4 = 20$ $-5 \cdot (-4) = 20$ $-5 \cdot 4 = -20$ $5 \cdot (-4) = -20$
Dividing Two Integers The quotient of two integers with the same sign is positive. The quotient of two integers with different signs is negative.	$20 \div 5 = 4 \qquad -20 \div (-5) = 4$ $-20 \div 5 = -4 \qquad 20 \div (-5) = -4$

Math

Chapter RESOURCES

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

2-6

Five-Minute Check (over Lesson 2-5)

Main Ideas and Vocabulary

Example 1: Write Ordered Pairs

Example 2: Graph Points and Name the Quadrant

Example 3: Graph an Algebraic Relationship

Main Ideas

2-6

• Graph points on a coordinate plane.

Chapter RESOURCES

• Graph algebraic relationships.

New Vocabulary

• quadrants

The Coordinate System

EXAMPLE Write Ordered Pairs

A. Write the ordered pair that names the point P.

The *x*-coordinate is 4. The *y*-coordinate is –2.

Answer: The ordered pair is (4, -2).

EXAMPLE Write Ordered Pairs

B. Write the ordered pair that names the point Q.

The *x*-coordinate is –3.

The *y*-coordinate is –1.

Chapter RESOURCES

Answer: The ordered pair is (-3, -1).

EXAMPLE Graph Points and Name the Quadrant

A. Graph and label S(-1, -5) on a coordinate plane. Name the quadrant in which the point lies.

Start at the origin.

Move 1 unit left.

Then move 5 units down and draw a dot.

Answer: Point S is in Quadrant III.

2-6

EXAMPLE Graph Points and Name the Quadrant

B. Graph and label U(-2, 3) on a coordinate plane. Name the quadrant in which the point lies.

Start at the origin.

Move 2 units left.

Then move 3 units up and draw a dot.

Answer: Point *U* is in Quadrant II.

EXAMPLE Graph Points and Name the Quadrant

- C. Graph and label T(0, -3) on a coordinate plane. Name the quadrant in which the point lies.
 - Start at the origin.
 - Since the *x*-coordinate is 0, the point lies on the *y*-axis.
 - Move 3 units down and draw a dot.
 - Answer: Point *T* is not in any quadrant.

0%

4 X

D. Quadrant IV

0%

4 X

Chapter RESOURCES

0%

EXAMPLE Graph an Algebraic Relationship

3 The difference between two integers is 4. If *x* represents the first integer and *y* represents the second integer, make a table of possible values for *x* and *y*. Then graph the ordered pairs and describe the graph.

First, make a table. Choose values for *x* and *y* that have a difference of 4.

$$x - y = 4$$
 x y (x, y) 2 -2 $(2, -2)$ 1 -3 $(1, -3)$ 0 -4 $(0, -4)$ -1 -5 $(-1, -5)$ -2 -6 $(-2, -6)$

RESOURCES

2-6

EXAMPLE Graph an Algebraic Relationship

3 Then graph the ordered pairs on a coordinate plane.

$$x - y = 4$$
 x
 y
 (x, y)

 2
 -2
 $(2, -2)$

 1
 -3
 $(1, -3)$

 0
 -4
 $(0, -4)$

 -1
 -5
 $(-1, -5)$

 -2
 -6
 $(-2, -6)$

2-6

EXAMPLE Graph an Algebraic Relationship

3 Answer: The points in the graph are on a line that slants upward to the right. The line crosses the y-axis at y = -4.

	<i>x</i> – <i>y</i> = 4			
x	y	(<i>x, y</i>)		
2	-2	(2, -2)		
1	-3	(1, -3)		
0	-4	(0, -4)		
-1	-5	(-1, -5)		
-2	-6	(-2, -6)		

A. The sum of two integers is 3. If *x* represents the first integer and *y* represents the second integer, make a table of possible values for *x* and *y*.

Α.	X	y
	-3	3
	0	3
	2	3
	3	3

X	y
-3	6
0	3
2	1
3	0

C.	X	y
	-3	0
	0	-3
	2	—5
	3	-6

□ A □ B ■ C □ D

0%

B. The sum of two integers is 3. If *x* represents the first integer and *y* represents the second integer, graph possible ordered pairs.

2 1	6	y		
1 -6-5-4-3-2-7 0 -1 -2 -3				
-6-5-4-3-2-10 1 2 3 4 5 6 -1 -2 -3	2			
-1 -2 -3 -3		•		<u> </u>
	2-10	1 2	3 4	5 6
, , , , , , , , , , , , , , , , , , ,	-			
	Ĭ			
		5 4 2 1 -2-1 0 -1 -2 -3	3 2 1 -2-10 -1 -2 -3 -4	3 2 1 -2-10 -2 -3 -3 -4

Chapter RESOURCES 0%

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

CHAPTER

2

Chapter Resources Menu

CheckPoint Five-Minute Checks

Image Bank

C^Oncepts in MOtion

Animation Multiplying Integers

Brain

The Coordinate System

Adding and Subtracting Integers

HAPTE

To use the images that are on the following three slides in your own presentation:

- **1.** Exit this presentation.
- 2. Open a chapter presentation using a full installation of Microsoft[®] PowerPoint[®] in editing mode and scroll to the Image Bank slides.
- **3.** Select an image, copy it, and paste it into your presentation.

CHAPTER Integer	S			
Image Bank				
• + + + + + + + + + + + + + + + + + + +	1			$\xrightarrow{1/2}$
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
y4 30				

Integers

Concepts in Motion Animation

K

Standardized Test Practice

Which sentence does the equation n – 5 = 10 represent?

- A. A number is the difference between 10 and 5.
- B. Five more than a number is 10.

- Five less than a number is 10.
- D. A number less than 5 is 10.

0%

Which option shows an integer to represent \$8 withdrawn from a bank account, and its graph on a number line?

Order the integers {-2, 4, -1, 2, -8} from least to greatest.

B.
$$\{-1, -2, 2, 4, -8\}$$

C. {4, 2, -1, -2, -8}

0%

Integers

HAPTED

Standardized Test Practice

6 The low temperatures for five days in February are shown in the table. What is the order of these temperatures from greatest to least?

le-Minute CHECK

A.
$$0^{\circ}, -2^{\circ}, -3^{\circ}, -4^{\circ}, 5^{\circ}$$

C.
$$-4^{\circ}, -3^{\circ}, -2^{\circ}, 0^{\circ}, 5^{\circ}$$

D, 5° , 0° , -2° , -3° , -4°

Low Temperatures -2° -4° 0° 5° -3°

(over Lesson 2-1)

0%

🗖 A 🗆 B 🗖 C 🗖 D

Standardized Test Practice

6 Holly recorded the difference between morning and evening temperatures each day last week in the table shown. Which day had the greatest change in temperature?

Difference in Temperature							
Day	Sun.	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.
Change	-6	+5	-4	+3	-4	-1	+4

B. Mon.

0%

- C. Fri.
- D. Sat.

20. What is the number?

A. -6*y*

C. –5*y*

D. *y*

