

Factors and Fractions

Chapter Menu

Lesson 4-1 Powers and Exponents
Lesson 4-2 Prime Factorization
Lesson 4-3 Greatest Common Factor
Lesson 4-4 Simplifying Algebraic Fractions
Lesson 4-5 Multiplying and Dividing Monomials
Lesson 4-6 Negative Exponents
Lesson 4-7 Scientific Notation

Lesson Menu

Five-Minute Check (over Chapter 3)
Main Ideas and Vocabulary
Example 1: Write Expressions Using Exponents
Concept Summary: Order of Operations
Example 2: Evaluate Numeric Expressions
Example 3: Evaluate Algebraic Expressions

Main Ideas

- Write expressions using exponents.
- Evaluate expressions containing exponents.

New Vocabulary

- factor
- base
- exponent
- power

EXAMMPIE Write Expressions Using Exponents

(1) A. Write $6 \bullet 6 \bullet 6 \bullet 6$ using exponents.

Answer: The base is 6. It is a factor 4 times, so the exponent is 4. $6 \cdot 6 \cdot 6 \cdot 6=6^{4}$

EXAMMPIE Write Expressions Using Exponents

(1) B. Write pusing exponents.

Answer: The base is p. It is a factor 1 time, so the exponent is 1. $p=p^{1}$

EXAMPLE Write Expressions Using Exponents

(1) C. Write $(-1)(-1)(-1)$ using exponents.

Answer: The base is -1 . It is a factor 3 times, so the exponent is 3 .

$$
(-1)(-1)(-1)=(-1)^{3}
$$

EXAMPLE Write Expressions Using Exponents

(1) D. Write $(5 x+1)(5 x+1)$ using exponents.

Answer: The base is $5 x+1$. It is a factor 2 times, so the exponent is 2 .

$$
(5 x+1)(5 x+1)=(5 x+1)^{2}
$$

EXAMPIE Write Expressions Using Exponents

(1) E. Write $\frac{1}{2} \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y$ using exponents.

First, group the factors with like bases. Then write using exponents.

$$
\begin{aligned}
\frac{1}{2} \bullet x \bullet x \bullet x \bullet x \bullet y \bullet y \bullet y=\frac{1}{2} \bullet(x \bullet x \bullet x & \bullet x) \bullet(y \bullet y \bullet y) \\
& x \bullet x \bullet x \bullet x=x^{4} \text { and } \\
& y \bullet y \bullet y=y^{3}
\end{aligned}
$$

Answer: $=\frac{1}{2} x^{4} y^{3}$

CHECK Your Progress

(1) A. Write the expression using exponents. 3• 3 • 3 • 3 • 3 • 3
A. $3^{2} \cdot 3^{3}$
B. $3 \cdot 6$
C. 3^{5}
(D.) 3^{6}

88/CheckPoint

CHECK Your Progress

(1) B. Write the expression using exponents. $m \bullet m \bullet m$
A. $3 m$
(B.) m^{3}
C. $m \bullet m^{3}$
D. m^{4}

88/CheckPoint

ChCHECK Your Progress,

(1) C. Write the expression using exponents. $(-6)(-6)(-6)(-6)$
A. 6^{4}
B. -6^{4}
C. $-6 \bullet 4$
(D.) $(-6)^{4}$

88/CheckPoint

ClCHECK Your Progress,

(1) D. Write the expression using exponents. $(4-2 x)(4-2 x)$
(A. $(4-2 x)^{2}$
B. $4-2 x^{2}$
C. $2(4-2 x)$
D. $4^{2}-2 x^{2}$

Sh CHEC Kour Progress:

(1) E. Write the expression using exponents. $9 \bullet a \bullet a \bullet a \bullet b \bullet b \bullet b \bullet b \bullet b$.
A. $9 a b^{5}$
(B.) $9 a^{3} b^{5}$
C. $(9 a b)^{8}$
D. $9 a^{8} b^{8}$

Cons firt

CONCEPT SUMMARY

Words

Step 1 Simplify the expressions inside grouping symbols first.

Step 2 Evaluate all powers.
Step 3 Do all multiplications or divisions in order from left to right.

Step 4 Do all additions or subtractions in order from left to right.

Order of Operations

Example

$$
\begin{aligned}
(3+4)^{2}+5 \cdot 2 & =7^{2}+5 \cdot 2 \\
& =49+5 \cdot 2 \\
& =49+10 \\
& =59
\end{aligned}
$$

EXAMPLE Evaluate Numeric Expressions

(2) A. Evaluate 4^{2}.

$$
\begin{aligned}
4^{2} & =4 \bullet 4 \\
& =16
\end{aligned}
$$

4 is a factor two times.
Multiply.

Answer: 16

$E X A M P L E$ Evaluate Numeric Expressions

(2) B. Evaluate $2 \cdot 3^{2}$.

$$
\begin{aligned}
2 \cdot 3^{2} & =2 \cdot 9 \\
& =18
\end{aligned}
$$

3 is a factor two times.
Multiply.

Answer: 18

CHECK Your Progress

(2) Evaluate $5 \bullet 4^{2}$.
A. 8
B. 20

0\%

(C.) 80
D. 81

EXAMPLE Evaluate Algebraic Expressions

(3) A. Evaluate $r^{3}-3$ if $r=-2$.

$$
\begin{aligned}
r^{3}-3 & =(-2)^{3}-3 & & \text { Replace } r \text { with }-2 . \\
& =(-2)(-2)(-2)-3 & & -2 \text { is a factor } 3 \text { times. } \\
& =-8-3 \text { or }-11 & & \text { Multiply. Then subtract. }
\end{aligned}
$$

Answer: -11

EXAMPLE Evaluate Algebraic Expressions

(3) B. Evaluate $x(y+2)^{2}$ if $x=2$ and $y=-2$.

$$
\begin{array}{rlrl}
x(y+2)^{2} & =2(-2+2)^{2} & & \text { Replace } x \text { with } 2 \text { and } y \text { with }-2 . \\
& =2(0)^{2} & & \text { Simplify the expression inside } \\
\text { the parentheses. }
\end{array}
$$

$$
=2(0) \text { or } 0
$$

Evaluate (0) ${ }^{2}$. Then simplify.

Answer: 0
(3) A. Evaluate the expression $100-x^{4}$ if $x=2$.
A. 92
B. 68
C. 98
D. 84

C,IECK Your Progress

(3) B. Evaluate the expression $m(5-n)^{3}$ if $m=-3$ and $n=3$.
A. 216
B. 24
C. -24
D. -18

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

Lesson Menu

Five-Minute Check (over Lesson 4-1)
Main Ideas and Vocabulary
Example 1: Identify Numbers as Prime or Composite
Example 2: Write Prime Factorization
Example 3: Factor Monomials

Main Ideas

- Write the prime factorizations of composite numbers.
- Factor monomials.

New Vocabulary

- prime number
- composite number
- prime factorization
- factor tree
- monomial
- factor

EXAMPLE Identify Numbers as Prime or Composite

(1) A. Determine whether 31 is prime or composite.

Find factors of 31 by listing the whole number pairs whose product is 31 .
$31=1 \times 31$
The number 31 has only two factors.

Answer: Therefore, 31 is a prime number.

EXAMPLE Identify Numbers as Prime or Composite

(1) B. Determine whether 36 is prime or composite.

Find factors of 36 by listing the whole number pairs whose product is 36 .

$$
\begin{aligned}
& 36=1 \times 36 \\
& 36=2 \times 18 \\
& 36=3 \times 12 \\
& 36=4 \times 9 \\
& 36=6 \times 6
\end{aligned}
$$

The factors of 36 are $1,2,3,4,6,9,12,18$, and 36 .
Answer: Since the number has more than two factors, it is composite.

Prime Factorization

ChIECK Your Progress:

(1) A. Determine whether 49 is prime or composite.
A. prime
B. composite
C. neither
D. prime and composite

Coninine chapter
Hesus nirra

Prime Factorization

C) CHECK Your Progress:

(1) B. Determine whether 29 is prime or composite.
(A.) prime
B. composite
C. neither
D. prime and composite

Coninine chapter
Hams nirra

Prime Factorization

EXAMPL: Write Prime Factorization

(2) Write the prime factorization of 56 .

$$
\begin{aligned}
56 & =8 \cdot 7 \\
8 & =4 \cdot 2 \\
4 & =2 \cdot 2
\end{aligned}
$$

The prime factorization is complete because 2 and 7 are prime numbers.

Answer: The prime factorization of 56 is $2 \bullet 2 \bullet 2 \bullet 7$ or $2^{3} \bullet 7$.

ClleCK Your Progress

(2) Write the prime factorization of 72.
A. 2^{6}
B. $2^{2} \cdot 3^{3}$
(C. $2^{3} \cdot 3^{2}$
D. $3^{2} \bullet 7$

EXAMPLE Factor Monomials

(3) A. Factor the monomial $16 p^{2} q^{4}$.
$16 p^{2} q^{4}=2 \cdot 2 \cdot 2 \cdot 2 \bullet p^{2} \cdot q^{4} \quad 16=2 \bullet 2 \bullet 2 \bullet 2$
$16 p^{2} q^{4}=2 \cdot 2 \bullet 2 \bullet 2 \bullet p \bullet p \bullet q \bullet q \cdot q \cdot q$
$p^{2} \bullet q^{4}=p \bullet p \bullet q$
$-q \bullet q \cdot q$

Answer: $16 p^{2} q^{4}=2 \bullet 2 \bullet 2 \bullet 2 \bullet p \bullet p \bullet q \bullet q \bullet q \bullet q$

EXAMPLE Factor Monomials

(3) B. Factor the monomial $-21 x^{2} y$.

$$
\begin{array}{ll}
21 x^{2} y=-1 \bullet 3 \bullet 7 \bullet x^{2} \bullet y & 21=1 \bullet 3 \bullet 7 \\
21 x^{2} y=-1 \bullet 3 \bullet 7 \bullet x \bullet x \bullet y & x^{2} \bullet y=x \bullet x \bullet y
\end{array}
$$

Answer: $21 x^{2} y=-1 \bullet 3 \bullet 7 \bullet x \bullet x \bullet y$

EXAMPLE Factor Monomials

(3) C. Factor the monomial $-39 a^{3} b c^{2}$.

$$
\begin{array}{r}
-39 a^{3} b c^{2}=-1 \bullet 3 \cdot 13 \bullet a^{3} \bullet b \bullet c^{2}-39=-1 \bullet 3 \bullet 13 \\
-39 a^{3} b c^{2}=-1 \bullet 3 \bullet 13 \bullet a \bullet a \bullet a \bullet b \cdot c \bullet c \\
a^{3} \bullet b \bullet c^{2}=a \bullet a \\
\bullet a \bullet b \bullet c \bullet c
\end{array}
$$

Answer: $-39 a^{3} b c^{2}=-1 \bullet 3 \bullet 13 \bullet a \bullet a \bullet a \bullet b \bullet c \bullet c$

C) CHECK Your Progress:

(3) A. Factor the monomial $12 a^{3} b$.
A. $3 \bullet 4 \bullet a \bullet a \bullet a \bullet b$
B. $12 \cdot a \bullet a \bullet a \bullet b$
C. $2 \cdot 2 \cdot 3 \cdot a^{3} \bullet b$
(D. $2 \cdot 2 \cdot 3 \cdot \boldsymbol{a} \bullet \boldsymbol{a} \bullet \boldsymbol{a} \bullet \boldsymbol{b}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$

Coss inf

ChIECK Your Progress

(3) B. Factor the monomial $-18 m n^{2}$.
A. $-18 \bullet m \bullet n \bullet n$
(B.) $-1 \bullet 2 \bullet 3 \bullet 3 \bullet m \bullet n \bullet n$
C. $-1 \bullet 2 \bullet 9 \bullet m \bullet n^{2}$
D. $-1 \bullet 2 \bullet 3 \bullet 3 \bullet m \bullet n^{2}$

Lesson Menu

Five-Minute Check (over Lesson 4-2)
Main Ideas and Vocabulary
Example 1: Find the GCF
Example 2: Real-World Example
Example 3: Find the GCF of Monomials

Example 4: Factor Expressions

Main Ideas

- Find the greatest common factor of two or more numbers or monomials.
- Use the Distributive Property to factor algebraic expressions.

New Vocabulary

- Venn diagram
- greatest common factor

EXAMPDE
 Find the GCF

(1) A. Find the GCF of 16 and 24.

Method 1 List the factors.
factors of 16: $1,2,4,8,16$ factors of 24: 1, 2, 3, 4, 6, 8, 12, 24

Answer: The greatest common factor of 16 and 24 is 8 .

Greatest Common Factor

EXAMPLE
 Find the GCF

(1) A. Find the GCF of 16 and 24 .

Method 2 Use prime factorization.

$16:(2) \cdot\left(\begin{array}{l}2 \\ 24 \\ 2\end{array}\right) \cdot\binom{2}{2} \cdot 2$

Common factors of 16 and 24: 2, 2, 2

The GCF is the product of the common prime factors.
$2 \cdot 2 \cdot 2=8$
Again, the GCF of 16 and 24 is 8 .
Answer: 8

EXAMPLE
 Find the GCF

(1) B. Find the GCF of 28 and 35 .

First, factor each number completely. Then circle the common factors.

The common prime factor is 7 .
Answer: The GCF of 28 and 35 is 7.

Greatest Common Factor

EXAMPLE
 Find the GCF

(1) C. Find the GCF of 12,48 , and 72.

Prime Factors
Prime Factors of 12 of 48

Prime
Factors of 72
The common prime factors are 2, 2, and 3 .

Answer: The GCF of 12, 48, and 72 is $2 \bullet 2 \bullet 3$ or 12 .

CHECK Your Progress:

(1) A. Find the GCF of 18 and 30 .
A. 3
(B.) 6
C. 2
D. 9

$88 /$ CheckPoint
Quis
(1) B. Find the GCF of 24 and 32 .
A. 2
B. 6
C. 8
D. 12

88/CheckPoint
(1) C. Find the GCF of 30,42 , and 60 .
(A.) 6
B. 3
C. 12
D. 2

$88 /$ CheckPoint
Crs.

Real-World EXAMPLE

(2) A. BAKE SALE Parents donated 150 chocolate chip cookies and 120 molasses cookies for a school bake sale. If the cookies are arranged on plates, and each plate has the same number of chocolate chip cookies and the same number of molasses cookies, what is the largest number of plates possible?
Find the GCF of 150 and 120.
$150:(2) \cdot(2) \cdot 2 \cdot 2 \cdot\binom{3}{3} \cdot 5 \cdot 5$
5
The common prime factors are 2,3 , and 5 .

Real-World EXAMPLE
(2) The GCF of 150 and 120 is $2 \cdot 3 \bullet 5$ or 30 .

Answer: So, 30 plates are possible.

Real-World EXAMPLE

(2) B. BAKE SALE Parents donated 150 chocolate chip cookies and 120 molasses cookies for a school bake sale. How many chocolate chip and molasses cookies will be on each plate?
Chocolate chip: $150 \div 30=5$
Molasses:
$120 \div 30=4$

Answer: So, each plate will have 5 chocolate chip cookies and 4 molasses cookies.

CHECK Your Progress

(2) A. APPLES There are 96 red apples and 72 green apples to be placed in baskets. If the apples are arranged in baskets, and each basket has the same number of red apples and the same number of green apples, what is the largest number of baskets possible?
A. 4 baskets
B. 12 baskets
C. 6 baskets

$$
\triangle A \square B \square C \square D
$$

D. 24 baskets
(2) B. APPLES There are 96 red apples and 72 green apples to be placed in baskets. How many red apples and green apples will be in each basket?
A. 8 red apples, 6 green apples
B. 4 red apples, $\mathbf{3}$ green apples
C. 24 red apples, 18 green apples
D. 16 red apples, 12 green apples

Greatest Common Factor

EXAMPLE Find the GCF of Monomials

(3) Find the GCF of $18 x^{3} y^{2}$ and $42 x y^{2}$.

Completely factor each expression.
$18 x^{3} y^{2}=(2) \cdot\binom{3}{42 x y^{2}} \cdot 3 \cdot x \cdot x \bullet x \bullet\binom{y}{3} \cdot\binom{y}{y} \cdot\left(\begin{array}{l}y\end{array}\right)$
Circle the common factors.

Answer: The GCF of $18 x^{3} y^{2}$ and $42 x y^{2}$ is $2 \bullet 3 \bullet x \bullet y$ - y or $6 x y^{2}$.

(3) Find the GCF of $32 m n^{4}$ and $80 m^{3} n^{2}$.
A. $4 m n^{2}$
(B. $16 \mathrm{mn}^{2}$

0\%
C. $16 m^{2} n^{4}$
D. $8 m n^{2}$
(2) Math Chapter

RESOUREES $\square \sqrt{\square} \sqrt{\square}$

Greatest Common Factor

EXAMPIE Factor Expressions

(4) Factor $3 x+12$.

First, find the GCF of $3 x$ and 12.
$3 x=$
$12=2 \cdot 2 \cdot\left(\begin{array}{l}3 \\ 3\end{array} \cdot x\right.$
The GCF is 3 .
Now, write each term as a product of the GCF and its remaining factors.

$$
\begin{aligned}
3 x+12 & =3(x)+3(4) \\
& =3(x+4)
\end{aligned}
$$

Distributive Property
Answer: $3 x+12=3(x+4)$

左

(4) Factor $4 x+20$.
A. $2(2 x+10)$
B. $4(x+20)$
C. $4(x+5)$
D. $2(x+10)$

8/CheckPoint

Lesson Menu

Five-Minute Check (over Lesson 4-3)
Main Ideas and Vocabulary
Example 1: Simplify Fractions
Example 2: Simplify Fractions
Example 3: Standardized Test Example
Example 4: Simplify Algebraic Fractions

Main Ideas

- Simplify fractions using the GCF.
- Simplify algebraic fractions.

New Vocabulary

- simplest form
- algebraic fraction

EXAMPIE Simplify Fractions

(1) Write $\frac{16}{24}$ in simplest form.
$16=2 \cdot 2 \cdot 2 \cdot 2 \quad$ Factor the numerator.
$24=2 \cdot 2 \cdot 2 \cdot 3 \quad$ Factor the denominator.
The GCF of 16 and 24 is $2 \bullet 2 \bullet 2$ or 8 .
$\frac{16}{24}=\frac{16 \div 8}{24 \div 8}$
$=\frac{2}{3}$
Divide the numerator and denominator by the GCF.

Simplest form

8/CHECK Your Progress:

(1) Write $\frac{12}{40}$ in simplest form.

$$
\begin{aligned}
& \text { A. } \frac{6}{20} \\
& \text { B. } \frac{3}{10} \\
& \text { C. } \frac{12}{40} \\
& \text { D. } \frac{2}{5}
\end{aligned}
$$

Cons hirt

EXAMMPIE Simplify Fractions

(2) Write $\frac{72}{120}$ in simplest form.
$\frac{72}{120}=\frac{2 \cdot 2 \cdot 2 \cdot z \cdot 3}{2 \cdot 2 \cdot 2 \cdot z \cdot 5}$
Divide the numerator and the denominator by the GCF, $2 \bullet 2 \bullet 2 \bullet 3$.

$$
=\frac{3}{5}
$$

Simplify.

Answer: $\frac{3}{5}$

COncepts in MQtion

Interactive Lab:
Representing Fractions
(2) Write $\frac{48}{80}$ in simplest form.

Standardized Test EXAMPLE

(3) 250 pounds is what part of 1 ton?
A
$\frac{1}{10}$
B
$\frac{1}{8}$
C
$\frac{1}{4}$
D
$\frac{1}{2}$

Read the Test Item
The phrase what part indicates a relationship that can be written as a fraction. You need to write a fraction comparing 250 pounds to the number of pounds in 1 ton.
Solve the Test Item
There are 2000 pounds in 1 ton.
Write the fraction $\frac{250}{2000}$ in simplest form.

Standardized Test EXAMPLE

(3) $\frac{250}{2000}=\frac{{ }^{1} 2 \cdot{ }^{1}, 5 \cdot{ }^{1}, 5 \cdot{ }^{1} \text {. }}{2_{1} \cdot 2 \cdot 2 \cdot 2 \cdot 5_{1} \cdot 5_{1} \cdot 5_{1}}$

Divide the numerator and the denominator by the GCF, 2 - 5 • 5 - 5 .

$$
=\frac{1}{8}
$$

Check

You can check whether your answer is correct by solving the problem in a different way. Divide the numerator and denominator by common factors until the fraction is in simplest form.
$\frac{250}{2000}=\frac{25}{200}$

Standardized Test EXAMPLE

(3)

$$
\begin{aligned}
& =\frac{5}{40} \\
& =\frac{1}{8}
\end{aligned}
$$

Answer: So, 250 pounds is $\frac{1}{8}$ of a ton. The answer is B.

S CHIECK Your Progress,

(3) 80 feet is what part of 40 yards?

$$
\begin{aligned}
& \text { A. } \frac{2}{3} \\
& \text { B. } \frac{1}{2} \\
& \text { C. } \frac{3}{40} \\
& \text { D. } \frac{1}{3}
\end{aligned}
$$

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

EXAMPLE Simplify Algebraic Fractions

(4) A. Simplify $\frac{20 m^{3} n^{2}}{65 m n}$.
$\frac{20 m^{3} n^{2}}{65 m n}=\frac{2 \cdot 2 \cdot{ }^{1}, 5 \cdot n \cdot n \cdot m \cdot m \cdot \not n^{1} \cdot n}{5_{1} \cdot 13 \cdot n \cdot n \cdot n_{1}^{n}}$

$$
=\frac{4 m^{2} n}{13}
$$

Divide the numerator and the denominator by the GCF, $5 \bullet m \bullet n$.

Simplify.

Answer: $\frac{4 m^{2} n}{13}$

ChCHECK Your Progress,

(4) A. Simplify $\frac{14 x^{4} y^{2}}{49 x^{2} y^{5}}$.

$$
\begin{aligned}
& \text { A. } \frac{14 x^{2}}{49 y^{3}} \\
& \text { B. } \frac{2 x^{2} y^{3}}{7} \\
& \text { C. } \frac{2 x^{2}}{7 y^{3}} \\
& \text { D. } \frac{2 y^{3}}{7 x^{2}}
\end{aligned}
$$

EXAMPLE Simplify Algebraic Fractions

(4) B. Simplify $\frac{x^{3} y^{2}}{x^{2} y^{3}}$.

$$
\begin{array}{rlrl}
\frac{x^{3} y^{2}}{x^{2} y^{3}} & =\frac{x_{1}^{1} \cdot \underbrace{1}_{1} \cdot x \cdot x \cdot x \cdot y \cdot y_{1}^{1}}{x \cdot x \cdot y \cdot y \cdot y} & & \text { Factor. } \\
& =\frac{x}{y} & \text { Simplify. }
\end{array}
$$

Answer: \underline{x}

CHECK Your Progress
 (4) B. Simplify $\frac{m^{2} n p^{4}}{m n^{3} p^{2}}$.

$$
\begin{aligned}
& \text { A. } \frac{m p^{2}}{n} \\
& \text { B. } \frac{p^{2}}{m n^{2}} \\
& \text { C. } \frac{n p^{2}}{m} \\
& \text { D. } \frac{m p^{2}}{n^{2}}
\end{aligned}
$$

Lesson Menu

Five-Minute Check (over Lesson 4-4)
Main Ideas
Kev Concept: Product of Powers
Example 1: Multiply Powers
Example 2: Multiply Monomials
Key Concept: Quotient of Powers
Example 3: Divide Powers
Example 4: Real-World Example

Main Ideas

- Multiply monomials.
- Divide monomials.

KEY CONCEPT

Words Multiply powers with the same base by adding their exponents.
Symbols $a^{m} \cdot a^{n}=a^{m+n}$
Example $3^{2} \cdot 3^{4}=3^{2+4}$ or 3^{6}

EXAMPPE Multiply Powers

(1) Find $3^{4} \cdot 3^{6}$.

$$
\begin{aligned}
3^{4} \cdot 3^{6} & =3^{4+6} \\
& =3^{10}
\end{aligned}
$$

The common base is 3 .
Add the exponents.

Answer: 3^{10}

STHECK Your Progress:

(1) Find $4^{3} \bullet 4^{5}$.
A. $\mathbf{4}^{2}$
(B. $\mathbf{4}^{8}$
C. 4^{15}
D. 4^{-2}

$88 /$ CheckPoint

EXAMPLE Multiply Monomials

(2) A. Find $y^{4} \bullet y$.

$$
\begin{aligned}
y^{4} \bullet y & =y^{+1} \\
& =y^{5}
\end{aligned}
$$

The common base is y. Add the exponents.

Answer: y^{5}

EXAMPLE Multiply Monomials

(2) B. Find $\left(3 p^{4}\right)\left(-2 p^{3}\right)$.

$$
\begin{aligned}
\left(3 p^{4}\right)\left(-2 p^{3}\right) & =(3 \bullet-2)\left(p^{4} \bullet p^{3}\right) & & \begin{array}{l}
\text { Group the coefficients a } \\
\text { variables. }
\end{array} \\
& =(-6)\left(p^{4+3}\right) & & \text { The common base is } p . \\
& =-6 p^{7} & & \text { Add the exponents. }
\end{aligned}
$$

Answer: $-6 p^{7}$
(2) A. Find the product of $w^{2} \bullet w^{5}$.
A. w^{3}
B. w^{7}
C. w^{10}
D. w^{-3}

C) CrIECK Your Progress

(2) B. Find the product of $\left(-4 m^{3}\right)\left(6 m^{2}\right)$.
A. $2 m^{5}$
(B. $\mathbf{- 2 4} \boldsymbol{m}^{5}$
C. $-24 m^{6}$
D. $2 m^{6}$

0\%

$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
88/CheckPoint

$4=5$
 Multiplying and Dividing Monomials

KEY CONCEPT

Quotient of Powers

Words Divide powers with the same base by subtracting their exponents.
Symbols $\frac{a^{m}}{a^{n}}=a^{m-n}$, where $a \neq 0$
Example $\frac{4^{5}}{4^{2}}=4^{5-2}$ or 4^{3}

COncepts in MQtion

BrainPOP:
Multiplying and Dividing Monomials

EXAMPPE Divide Powers

(3) A. Find $\frac{8^{11}}{8^{5}}$.

$$
\begin{aligned}
\frac{8^{11}}{8^{5}} & =8^{11-5} & & \text { The common base is } 8 . \\
& =8^{6} & & \text { Subtract the exponents. }
\end{aligned}
$$

Answer: 8^{6}

EXAMPLE Divide Powers

(3) B. Find $\frac{x^{12}}{x}$.
$\frac{x^{12}}{x}=x^{12-1}$
The common base is x.
$=x^{11}$
Subtract the exponents.

Answer: x^{11}

ACHECK Your Progress.
(3) A. Find $\frac{6^{5}}{6^{3}}$.
(A.) 6^{2}
B. 6^{8}
C. 6^{-2}
D. 6^{15}
(2) Math Chapter

RESOURCES

STCHECK Your Progress,

(3) B. Find $\frac{r^{4}}{r^{1}}$.
A. r^{4}
B. 1^{4}
(C.) r^{3}
D. r^{5}

Real-World EXAMPLE

(4) FOLDING PAPER If you fold a sheet of paper in half, you have a thickness of 2 sheets. Folding again, you have a thickness of 4 sheets. Continue folding in half and recording the thickness. How many times thicker is a sheet that has been folded 4 times than a sheet that has not been folded?
Write a division expression to compare the thickness.
$\frac{2^{4}}{2^{0}}=2^{4-0}$
Subtract the exponents.

$$
=2^{4} \text { or } 16
$$

Answer: So, the paper is 16 times thicker.

CHECK Your Progress

(4) RACING Car A can run at a speed of 2^{8} miles per hour and car B runs at a speed of 2^{7} miles per hour. How many times faster is car A than car B?
A. $\mathbf{2}^{15}$
(B. 2
C. 2^{56}
D. $\mathbf{2}^{2}$

CheckPoint

Lesson Menu

Five-Minute Check (over Lesson 4-5)
Main Ideas
Key Concept: Negative Exponents
Example 1: Use Positive Exponents
Example 2: Use Negative Exponents
Example 3: Real-World Example
Example 4: Algebraic Expressions with Negative Exponents

Main Ideas

- Write expressions using negative exponents.
- Evaluate numerical expressions containing negative exponents.

KEY CONCEPT

Negative Exponents

Symbols $a^{-n}=\frac{1}{a^{n}}$, for $a \neq 0$ and any whole number n.
Example $5^{-4}=\frac{1}{5^{4}}$

EXAMPLE Use Positive Exponents

(1) A. Write 3^{-4} using a positive exponent.

$$
3^{-4}=\frac{1}{3^{4}}
$$

Definition of negative exponent

Answer: $\frac{1}{3^{4}}$

EXAMPLE Use Positive Exponents

(1) B. Write m^{-2} using a positive exponent.

$$
m^{-2}=\frac{1}{m^{2}}
$$

Definition of negative exponent

Answer: $\frac{1}{m^{2}}$

SHAECK Your Progress,

(1) A. Write 5^{-3} using a positive exponent.
A. 5^{3}
B. $\frac{1}{3^{5}}$
C. $\frac{1}{5^{3}}$
D. 5^{2}

SHCHCK Your Progress,

(1) B. Write y^{-6} using a positive exponent.
(A. $\frac{1}{y^{6}}$
B. y^{6}
C. $\frac{1}{6}$
D. $\frac{1}{y^{5}}$

$88 /$ CheckPoint

EXAMPL: Use Negative Exponents

(2) Write $\frac{1}{125}$ as an expression using a negative exponent.

$$
\begin{aligned}
\frac{1}{125} & =\frac{1}{5 \cdot 5 \cdot 5} & & \text { Find the prime factorization of } \\
& =\frac{1}{5^{3}} & & \text { Definition of exponent } \\
& =5^{-3} & & \text { Definition of negative exponent }
\end{aligned}
$$

Answer: 5^{-3}

ClIECK Your Progress
(2) Write $\frac{1}{32}$ as an expression using a negative exponent.
A. $\frac{1}{2^{-5}}$
B. 2^{-6}
C. 2^{-4}
(D. 2^{-5}

Real-World EXAMPLE

(3) ATOM An atom is an incredibly small unit of matter. The smallest atom has a diameter of approximately $\frac{1}{10}$ of a nanometer, or 0.0000000001 meter. Write the decimal as a fraction and as a power of 10 .

$$
\begin{array}{rlr}
0.0000000001 & =\frac{1}{10,000,000,000} & \begin{array}{l}
\text { Write the decimal as a } \\
\text { fraction. }
\end{array} \\
& =\frac{1}{10^{10}} & 10,000,000,000=10^{10}
\end{array}
$$

Definition of negative exponent

Sh CHECK Your Progress:

(3) WEATHER Fog is composed of cloud droplets with a diameter of 0.00001 meter. Write the decimal as a fraction and as a power of ten.

$$
\begin{aligned}
& \text { A. } \frac{1}{10,000} ; 10^{-4} \\
& \text { B. } \frac{1}{10,000} ; 10^{-5}
\end{aligned}
$$

C. $\frac{1}{100,000} ; 10^{-5}$
D. $\frac{1}{100,000} ; 10^{-6}$

EXAMPIE

Algebraic Expressions with

 Negative Exponents(4) Evaluate r^{-2} if $r=-4$.

$$
\begin{aligned}
r^{-2} & =(-4)^{-2} \\
& =\frac{1}{(-4)^{2}} \\
& =\frac{1}{16}
\end{aligned}
$$

Replace r with -4 .

Definition of negative exponent

Find $(-4)^{2}$.
Answer: $\frac{1}{16}$

shentec Your Progress:

(4) Evaluate d^{-3} if $d=5$.
A. 125
B. $\frac{1}{15}$
C. $\frac{1}{125}$
D. -125

$88 /$ CheckPoint

Lesson Menu

Five-Minute Check (over Lesson 4-6)
Main Ideas and Vocabulary
Key Concept: Scientific Notation
Example 1: Express Numbers in Standard Form
Example 2: Express Numbers in Scientific Notation
Example 3: Real-World Example
Example 4: Real-World Example

Main Ideas

- Express numbers in standard form and in scientific notation.
- Compare and order numbers written in scientific notation.

New Vocabulary

- standard form
- scientific notation

Scientific Notation

KEY CONCEPT

Scientific Notation

Words A number is expressed in scientific notation when it is written as the product of a factor and a power of 10 . The factor must be greater than or equal to 1 and less than 10.

Symbols $a \times 10^{n}$, where $1 \leq a<10$ and n is an integer
Examples $5,000,000=5.0 \times 10^{6} \quad 0.0005=5.0 \times 10^{-4}$

EXAMPLE Express Numbers in Standard Form

(1) A. Express 4.395×10^{4} in standard form.

$$
\begin{aligned}
4.395 \times 10^{4} & =4.395 \times 10,000 \\
& =4.3950
\end{aligned}
$$

Answer: 43,950

EXAMPLE Express Numbers in Standard Form

(1) B. Express 6.79×10^{-6} in standard form.

$$
\begin{aligned}
6.79 \times 10^{-6} & =6.79 \times 0.000001 \\
& =0.00000679
\end{aligned}
$$

$$
10^{-6}=0.000001
$$

Move the decimal point 6 places to the left.

Answer: 0.00000679

ClleCK Your Progress

(1) A. Express 2.614×10^{6} in standard form.
(A.) $2,614,000$
B. $\mathbf{2 6 1 , 4 0 0}$
C. 0.000002614
D. 0.002614

Check Your Progress:

(1) B. Express 8.03×10^{-4} in standard form.
A. 80,300
B. 8.030
C. 0.000803
D. 0.0803

EXAMPI: Express Numbers in Scientific Notation

(2) A. Express 800,000 in scientific notation.

$$
800,000=8.0 \times 100,000
$$

The decimal point moves 5 places.

$$
=8.0 \times 10^{5}
$$

The exponent is positive.

Answer: 8.0×10^{5}

EXAMPI: Express Numbers in Scientific Notation

(2) B. Express 0.0119 in scientific notation.

$$
\begin{array}{ll}
0.0119=1.19 \times 0.01 & \begin{array}{l}
\text { The decimal point moves } \\
2 \text { places } .
\end{array}
\end{array}
$$

$$
=1.19 \times 10^{-2}
$$

The exponent is negative.

Answer: 1.19×10^{-2}

CHECK Your Progress

(2) A. Express 65,000 in scientific notation.

$$
\text { A. } 6.5 \times 10^{5}
$$

B. 6.5×10^{-4}
C. 6.5×10^{4}
D. 65×10^{3}

CHECK Your Progress

(2) B. Express 0.00042 in scientific notation.
A. 42×10^{-5}
(B.) $\mathbf{4 . 2 \times 1 0 ^ { - 4 }}$
C. 4.2×10^{4}
D. 4.2×10^{-3}

Real-World EXAMPLE

(3) SPACE The table shows the planets and their distances from the Sun. Estimate how many times farther Pluto is from the Sun than Mercury is from the Sun.

Explore The distance from the Sun to Pluto is $5.90 \times 10^{9} \mathrm{~km}$ and the distance from the Sun to Mercury is $5.80 \times 10^{7} \mathrm{~km}$.

Source: The World Almanac

Real-World EXAMPLE

(3) Plan To find how many times farther Pluto is from the Sun than Mercury is from the Sun, find the ratio of Pluto's distance to Mercury's distance. Since you are estimating, round the distance 5.90×10^{9} to 6.0×10^{9} and round the distance 5.80×10^{7} to 6.0×10^{7}.

Solve $\frac{6.0 \times 10^{9}}{6.0 \times 10^{7}}=1.0 \times 10^{2} \quad$ Divide.
Answer: So, Pluto is about 1.0×10^{2} or 100 times farther from the Sun than Mercury is.

Check Use estimation to check the reasonableness of the results.

- CIECK Your Progress

(3) SPACE Use the table to estimate how many times farther Pluto is from the Sun than Earth is from the Sun.

0\%
A. 3
B. 30
C. 38
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$

Source: The World Almanac
D. 300

Real-World EXAMPLE

(4) SPACE The diameters of Mercury, Saturn, and Pluto are 4.9×10^{3} kilometers, 1.2×10^{5} kilometers, and 2.3×10^{3} kilometers, respectively. List the planets in order of increasing diameter.

First, order the numbers according to their exponents.
Then, order the numbers with the same exponent by comparing the factors.

Step 1

$$
4.9 \times 10^{3}<1.2 \times 10^{5}
$$

$$
2.3 \times 10^{3}
$$

Step 1

$$
2.3 \times 10^{3}<4.9 \times 10^{3}
$$

Compare the factors:
 $2.3<4.9$.

Answer: So, the order is Pluto, Mercury, and Saturn.

CHECK Your Progress:

(4) Order the numbers $6.21 \times 10^{5}, 2.35 \times 10^{4}, 5.95 \times 10^{9}$, and 4.79×10^{4} in decreasing order.
A. $2.35 \times 10^{4}, 4.79 \times 10^{4}, 6.21 \times 10^{5}$, and 5.95×10^{9}
B. $6.21 \times 10^{5}, 5.95 \times 10^{9}, 4.79 \times 10^{4}$, and 2.35×10^{4}
C. $2.35 \times 10^{4}, 4.79 \times 10^{4}, 5.95 \times 10^{9}$, and 6.21×10^{5}
(D.) $5.95 \times 10^{9}, 6.21 \times 10^{5}, 4.79 \times 10^{4}$, and 2.35×10^{4}

Chapter Resources Menu

$8 /$ checkPoint Five-Minute Checks

Id Image Bank
? Math Tools
CUncepts
in MQtion
Interactive \quad Lab $\times \div$ Representing Fractions
$\stackrel{\text { Brain }}{\text { POP }} \quad$ Multiplying and Dividing Monomials

Lesson 4-1 (over Chapter 3)
Lesson 4-2 (over Lesson 4-1)
Lesson 4-3 (over Lesson 4-2)
Lesson 4-4 (over Lesson 4-3)
Lesson 4-5 (over Lesson 4-4)
Lesson 4-6 (over Lesson 4-5)
Lesson 4-7 (over Lesson 4-6)

Factors and Fractions

Image Bank

To use the images that are on the following three slides in your own presentation:

1. Exit this presentation.
2. Open a chapter presentation using a full installation of Microsoft ${ }^{\circledR}$ PowerPoint ${ }^{\circledR}$ in editing mode and scroll to the Image Bank slides.
3. Select an image, copy it, and paste it into your presentation.

Factors and Fractions

Image Bank

Factors and Fractions

Image Bank

Image Bank

$\mid \leftarrow \leftarrow \Rightarrow$
(1) Solve $x-3=9$. Check the solution.
A. -6
B. -3
C. 6
(D.) 12

88/CheckPoint
トた
(2) Solve $2 x=-16$. Check the solution.
(A.) -8
B. -14

C. -18
D. -32
(3) Solve $-12=\frac{x}{-6}$. Check the solution.
A. -72
B. -18

0\%
C. 2
(D.) 72
(4) Solve $3 x-2=13$. Check the solution.
A. $\frac{13}{6}$
B. $\frac{11}{3}$
(C. 5
D. 45

$88 /$ CheckPoint
$\stackrel{1}{ }$
(5) Janet's age is 3 years less than three times her cousin's age. The sum of their ages is 29 . What is Janet's age?
(A.) 21 years
B. 18 years
C. 11 years
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 8 years

Standardized Test Practice

(6) The total cost of a shirt and a pair of jeans is $\$ 72$. The jeans cost twice as much as the shirt. Which equation could be used to find the cost of the shirts?
A. $2 s=72$

0\%
(B.) $s+2 s=72$
C. $2 s-s=72$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. $s+3=72$
(1) Write the expression $(-5)(-5)(-5)$ using exponents.

$$
\text { A. } 5^{3}
$$

B. 5^{-3}
(C. $(-5)^{3}$
D. $-(5)^{3}$

に $\Leftarrow \rightarrow$
(2) Write the expression $m \bullet m \bullet m \bullet m \bullet m \bullet m$ using exponents.
(A.) m^{6}
B. $6 m$
0%

C. $m+6$
D. $6 m^{6}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
$88 /$ CheckPoint
FHt
(3) Write the expression $4 \bullet a \bullet a \bullet(b+1)(b+1)$ using exponents.
A. $4(2 a)(2 b+2)$
0%
B. $4 a(a b+1)^{2}$
(C.) $4 a^{2}(b+1)^{2}$
D. $4 a^{2} 2(b+1)$
(4) Evaluate the expression $a^{0}+13$ for $a=-3$.
A. 16
B. 14
C. 13
D. 10

$\stackrel{\mid}{ } \mathrm{F} \rightarrow$
(5) Evaluate the expression $\left(a^{2}\right)\left(b^{3}\right)$ for $a=-3$ and $b=1$.
(A.) 9
B. 6
C. -6
D. -9

0 Fivo-Minute CHECK (over Lesson 4-1)

Standardized Test Practice

(6) Suppose a certain tree triples in height every 4 years. If the initial height of the tree is 4 feet, how tall will the tree be after 16 years?
A. 64

0\%
B. 108
C. 256
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 324
(1) Determine whether the number 51 is prime or composite.
(A. composite

0\%
0\%
B. prime
\leftrightarrow
(2) Determine whether the number 37 is prime or composite.
A. composite

0\%
0\%
\square A ■ B

88/CheckPoint
$H+F \rightarrow$

0 Fivo-Minute CHECK (over Lesson 4-2)

(3) Write the prime factorization of 75 . Use exponents for repeated factors.
A. $(3 \cdot 5)^{2}$

0\%
B. $3 \bullet 2^{5}$
C. $2 \cdot 3^{5}$
(D. $3 \bullet 5^{2}$
$\square A \square B \square C \square D$
$88 /$ CheckPoint
FHF
(4) Write the prime factorization of 108. Use exponents for repeated factors.
(A. $\mathbf{2}^{2} \cdot 3^{3}$
B. $\mathbf{2}^{\mathbf{2}}+\mathbf{3}^{\mathbf{3}}$
C. $\mathbf{2}^{3}+3^{2}$
D. $2^{3} \cdot 3^{2}$

88/CheckPoint
$1 F \leftarrow \rightarrow$
(5) Factor $15 x^{2}$.
A. $3+5+x+x$
B. $3 \bullet 5 \bullet 5 \bullet x$

C. $3 \bullet 5 \bullet x \bullet x$
D. $15+x^{2}$

Factors and Fractions

\int Fivo-Minute CHECK (over Lesson 4-2)

Standardized Test Practice

(6) Which of the following is $-50 x^{3} y^{2}$ when factored?

$$
\text { (A.) }-1 \bullet 2 \bullet 5 \bullet 5 \bullet x \bullet x \bullet x \bullet y \bullet y
$$

B. $2 \bullet 5 \bullet 5 \bullet x \bullet x \bullet x \bullet y \bullet y$
C. $-1 \bullet 2 \bullet 5 \bullet 5 x^{3} y^{2}$
D. $2 \bullet 5 \bullet 5 x^{3} y^{2}$
(1) Find the GCF of the set of numbers $22,55$.
(A.) 11
B. 22
C. 55
D. 110

H
(2) Find the GCF of the set of numbers $15,18,31$.
A. 2790
B. 930

C. 3
D. 1
(3) Find the GCF of the monomials $27 x y, 45 y^{2}$.
A. $27 x$
B. $9 y$

0\%
C. $9 y^{2}$
D. $27 x y^{2}$
(4) Factor the expression $12+6 a$.
A. 18a
B. $12 \cdot 6 a$
(C.) $6(2+a)$
D. $6(a+12)$

FHF
(5) Factor the expression $18 x+30 y$.
(A.) $6(3 x+5 y)$
B. $18 x+30 y$

0\%

C. $6(3 x+30 y)$
D. $6 x(3 x+5 y)$

Factors and Fractions
C) FNo-Minute CHECK (over Lesson 4-3)

Standardized Test Practice
(6) Find the GCF of $35 x^{2} y$ and $84 x y^{3}$.
A. 7

0\%
(B. $7 x y$
C. $7 x^{2} y^{2}$
D. $6 x y$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$

Feve-Minute CHECK (over Lesson 4-4)

(1) Write the fraction $\frac{8}{24}$ in simplest form. If the fraction is already in simplest form, choose simplified.
(A.) $\frac{1}{3}$
B. $\frac{4}{12}$
C. $\frac{3}{8}$
D. simplified

(2) Write the fraction $\frac{16}{25}$ in simplest form. If the fraction is already in simplest form, choose simplified.
A. $\frac{4}{5}$
B. $\frac{2}{5}$
C. $\frac{9}{25}$
D. simplified

$$
\triangle A \square B \square C \square D
$$

0 Fivo-Minute chieck (over Lesson 4-4)

(3) Write the fraction $\frac{42}{56}$ in simplest form. If the fraction is already in simplest form, choose simplified.
A. $\frac{6}{7}$ 0%
(B.) $\frac{3}{4}$
C. $\frac{21}{26}$

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

D. simplified

F) Fivo-Minute CHECK (over Lesson 4-4)

(4) Write the fraction $\frac{15 x}{18 x}$ in simplest form. If the fraction is already in simplest form, choose simplified.
A. $\frac{5 x}{6}$
B. $\frac{5}{6 x}$
(C.) $\frac{5}{6}$
D. simplified

Prvo-Minute CHECK (over Lesson 4-4)

(5) Write the fraction $\frac{6 a^{4}}{21 a}$ in simplest form. If the fraction is already in simplest form, choose simplified.

$$
\begin{aligned}
& \text { (A. } \frac{2 a^{3}}{7} \\
& \text { B. } \frac{2 a}{7} \\
& \text { C. } \frac{2 a^{4}}{7}
\end{aligned}
$$

D. simplified
$1+\leftarrow \rightarrow$

Factors and Fractions

0 Fivo-Minute CHECK (over Lesson 4-4)

Standardized Test Practice

(6) Which fraction is $\frac{17 a b c^{4}}{a^{3} b}$ written in simplest form?
A. $17 a^{4} c^{4}$

$$
\begin{aligned}
& \text { B. } \frac{17 a^{2}}{c^{4}} \\
& \text { C. } \frac{17 b c^{4}}{a^{2}} \\
& \text { D. } \frac{17 c^{4}}{a^{2}}
\end{aligned}
$$

(1) Find the product of 10^{8} and 10^{4} using exponents.
A. 10^{2}
B. 10^{4}
(C. 10^{12}
D. 10^{32}

に $\Leftarrow \rightarrow$
(2) Find the product of a^{5} and a^{5} using exponents.
A. $(2 a)^{5}$
B. $5 a^{5}$
C. a^{25}
D. a^{10}

Factors and Fractions

C) FNo-Minute CHECK (over Lesson 4-5)
(3) Find the quotient of $\frac{10^{8}}{10^{4}}$ using exponents.
(A.) 10^{4}
B. 10^{2}

0\%
C. 10^{12}
D. 10^{32}

Factors and Fractions

F) Fivo-Minute CHECK (over Lesson 4-5)

(4) Find the quotient of $\frac{x^{9}}{x^{3}}$ using exponents.
A. $9 x^{3}$
B. x^{12}
(C. x^{6}
D. x^{3}

$\stackrel{\vdash}{ }$
(5) Find the product of $4 y$ and $5 y^{4}$ using exponents.
A. $9 y^{4}$
(B.) $20 y^{5}$
C. $5 y^{8}$
D. $80 y^{2}$

Factors and Fractions
C) FNo-Minute CHECK (over Lesson 4-5)

Standardized Test Practice
(6) Find the product of n^{6} and n^{2}.
A. n^{12}

0\%
(B. \boldsymbol{n}^{8}
C. n^{4}
D. n^{3}
\square A■B■CםD
$889 /$ CheckPoint
FHF
(1) Write the expression 2^{-3} using a positive exponent.
A. 2^{3}
B. 3^{2}
C. -2^{3}

$$
\text { (D.) } \frac{1}{2^{3}}
$$

He \rightarrow
(2) Write the expression a^{-1} using a positive exponent.

$$
\begin{aligned}
& \text { A. } \frac{1}{a} \\
& \text { B. } \frac{1}{-a} \\
& \text { C. }-a^{1} \\
& \text { D. } a^{1}
\end{aligned}
$$

(3) Write the expression $(-5)^{-4}$ using a positive exponent.
(A. $\frac{1}{(-5)^{4}}$
B. $\frac{1}{5^{4}}$
C. -5^{4}
D. 5^{4}
(4) Write $\frac{1}{4^{5}}$ as an expression using a negative exponent other than -1 .
A. 4^{5}
B. -4^{5}
(C.) 4^{-5}
D. -4^{-5}

$88 /$ CheckPoint
$H+F \rightarrow$
(5) Write $\frac{1}{49}$ as an expression using a negative exponent other than -1 .
A. 49^{1}

Abstract

B. 49^{-1} C. -7^{2} $\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$ D. 7^{-2}

88/CheckPoint

FHF

Factors and Fractions
 F) Fivo-Minute CHECK (over Lesson 4-6)

Standardized Test Practice
(6) Evaluate n^{-4} if $n=-2$.

$$
\text { (A.) } \frac{1}{16}
$$

B. $\frac{1}{8}$

0\%
C. -8
D. -16

