Interactive Classroom

Chapter 7 Functions and Graphing

Click the mouse button or press the space bar to continue.

abra

Copyright © by The McGraw-Hill Companies, Inc.

Chapter Menu

Lesson 7-1 Functions

- **Lesson 7-2** Representing Linear Functions
- Lesson 7-3 Rate of Change
- Lesson 7-4 Constant Rate of Change and Direct Variation
- Lesson 7-5 Slope
- Lesson 7-6 Slope-Intercept Form
- **Lesson 7-7** Writing Linear Equations
- Lesson 7-8 Prediction Equations

Functions

Five-Minute Check (over Chapter 6)

Main Idea and Vocabulary

Example 1: Ordered Pairs and Tables as Functions

Example 2: Use a Graph to Identify Functions

Example 3: Real-World Example

Main Ideas

Functions

- Determine whether relations are functions.
- Use functions to describe relationships between two quantities.

Chapter RESOURCES

New Vocabulary

- function
- vertical line test

EXAMPLE Ordered Pairs and Tables as Functions

A. Determine whether the relation is a function. Explain.

$$\{(-3, -3), (-1, -1), (0, 0), (-1, 1), (3, 3)\}$$

Functions

Answer: No; –1 in the domain is paired with both –1 and 1 in the range.

B. Determine whether the relation is a function. Explain.

Functions

X	7	6	5	2	-3	-6
Y	2	4	6	4	2	-2

Answer: Yes; each *x* value is paired with only one *y* value.

Chapter RESOURCES

(--)

Yes; each *x* value is paired with only one *y* value.

- B. No; –2 is in the domain and in the range.
- C. No; 2 in the domain is paired with 5 and –2 in the range.

Chapter RESOURCES

D. no; not a relation

- A. Yes; each x value is paired with only one y value.
- B. No; 1 is in the domain and in the range.

No; 1 in the domain is paired with 4 and 2 in the range.

D. no; not a relation

Determine whether the graph is a function. Explain.

Chapter RESOURCES

Answer: Yes; it passes the vertical line test.

- B. Yes; each y value is paired with two x values.
- C. No; it does not pass the vertical line test.
- D. cannot be determined without specific ordered pairs

3 A. BUSINESS The table shows the number of boxes made.

Number of Hours	Number of Boxes
0	0
10	3000
20	6000
30	9000

Do these data represent a function? Explain.

Answer: Yes; for each 10 hours, only one amount of boxes is made.

B. Describe how box production is related to hours of operation.

Number of Hours	Number of Boxes
0	0
10	3000
20	6000
30	9000

Answer: As the number of hours increases, the number of boxes produced increases.

HECK Your Progress

A. BUSINESS The table shows the number of chairs made. Do these data represent a function? Explain.

- **A**.
- Yes; each domain value is paired with only one range value.
- B. Yes; there are two range values for one domain value.
- C. No; there is one range value for each domain value.
- D. No; a domain value is paired with two range values.

Number of Hours	Number of Chairs
5	120
10	240
15	360
20	480

0%

HECK Your Progress

- B. BUSINESS The table shows the number of chairs made. Describe how chair production is related to hours of operation.
 - A. As hours decrease, the number of chairs increases.
 - B. As hours increase, the number of chairs increases.
 - C. As hours increase, the number of chairs decreases.
 - D. Chair production is not related to hours of operation.

Number of Hours	Number of Chairs
5	120
10	240
15	360
20	480

0%

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 7-1)

Main Ideas and Vocabulary

Example 1: Use a Table of Ordered Pairs

Example 2: Solve an Equation for y

Example 3: Graph a Linear Equation

Concept Summary: Representing Functions

Main Ideas

- Solve linear equations with two variables.
- Graph linear equations using ordered pairs.

New Vocabulary

linear equation

EXAMPLE Use a Table of Ordered Pairs

() Find four solutions of y = 4x + 3.

Choose four values for *x*. Then substitute each value into the equation to solve for *y*. There are many possible solutions. The solutions you find depend on which *x* values you choose.

x	y = 4x + 3	y	(<i>x</i> , <i>y</i>)
0	y = 4(0) + 3	3	(0, 3)
1	y = 4(1) + 3	7	(1, 7)
2	y = 4(2) + 3	11	(2, 11)
3	y = 4(3) + 3	15	(3, 15)

RESOURCES

EXAMPLE Use a Table of Ordered Pairs

Sample Answer: Four possible solutions are (0, 3), (1, 7), (2, 11), and (3, 15).

C. (0, -4), (1, -2), (2, 2), and (3, -1)

Real-World EXAMPLE Solve an Equation for y

BUSINESS At a local software company, Level 1 employees x earn \$48,000 and Level 2 employees y earn \$24,000. Find four solutions of 48,000x + 24,000y = 216,000 to determine how many employees at each level the company can hire for \$216,000.

First, rewrite the equation by solving for *y*.

Representing Linear Functions

Real-World EXAMPLE Solve an Equation for y

Choose four x values and substitute them into y = 9 - 2x.

x	y=9-2x	y	(<i>x</i> , <i>y</i>)
0	y = 9 - 2(0)	9	(0, 9)
1	y = 9 - 2(1)	7	(1, 7)
2	y = 9 - 2(2)	5	(2, 5)
3	y = 9 - 2(3)	3	(3, 3)

Sample Answer: (0, 9), (1, 7), (2, 5), and (3, 3) 0 Level 1, 9 Level 2 1 Level 1, 7 Level 2 2 Level 1, 5 Level 2 3 Level 1, 3 Level 2

Β.

Representing Linear Functions

HECK Your Progress

BOOKS At a local bookstore, hardbacks are on sale for \$6 and paperbacks are on sale for \$3. Bob has \$42 to spend on books. Find four solutions to determine how many books of each type Bob can buy with his \$42.

- A. 0 hardbacks, 42 paperbacks 3 hardbacks, 24 paperbacks 5 hardbacks, 12 paperbacks 7 hardbacks, 0 paperbacks
 - 0 hardbacks, 14 paperbacks 1 hardbacks, 12 paperbacks 2 hardbacks, 10 paperbacks 3 hardbacks, 8 paperbacks
- C. 0 hardbacks, 42 paperbacks 3 hardbacks, 24 paperbacks 5 hardbacks, 9 paperbacks 7 hardbacks, 7 paperbacks
- D. 0 hardbacks, 14 paperbacks 1 hardbacks, 8 paperbacks 2 hardbacks, 2 paperbacks 3 hardbacks, -4 paperbacks

■ A ■ B ■ C ■ D

Chapter RESOURCES 0%

Representing Linear Functions

EXAMPLE Graph a Linear Equation

3 Graph y = x - 3 by plotting ordered pairs.

First, find ordered pair solutions.

x	y = x - 3	y	(x, y)
-1	y = -1 - 3	—4	(-1, -4)
0	y=0-3	-3	(0, -3)
1	y = 1 - 3	-2	(1, -2)
2	y = 2 - 3	-1	(2, -1)

Four solutions are (-1, -4), (0, -3), (1, -2), and (2, -1).

EXAMPLE Graph a Linear Equation

Plot these ordered pairs and draw a line through them. Note that the ordered pair for any point on this line is a solution of y = x - 3. The line is a complete graph of the function.

EXAMPLE Graph a Linear Equation

Check It appears from the graph that (4, 1) is also a solution. Check this by substitution.

y = x - 3 Write the equation.

$$1 \stackrel{?}{=} 4 - 3$$

Replace *x* with 4 and *y* with 1.

 $1 = 1 \checkmark$ Simplify.

Representing Linear Functions

CHECK Your Progress

3 Graph y = 5 - x by plotting ordered pairs.

(1, 4)

(3, 2)

0

(2, 3)

(4, 1)

(5, 0)

X

Chapter RESOURCES

(3, 2)

(4, 1)

0%

🗖 A 🗖 B 🖪 C 🗖 D

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Five-Minute Check (over Lesson 7-2)

Main Ideas and Vocabulary

Example 1: Real-World Example

Example 2: Compare Rates of Change

Example 3: Negative Rate of Change

Concept Summary: Rates of Change

Main Ideas

- Find rates of change.
- Solve problems involving rates of change.

Chapter RESOURCES

New Vocabulary

• rate of change

Rate of Change

Real-World EXAMPLE

SCHOOL The graph shows Jared's quiz scores for the first five weeks after he joined a study group. Find the rate of change from Week 2 to Week 5.

Chapter RESOURCES

rate of change = $\frac{89-76}{5-2}$ — change in quiz score ≈ 4.3 Simplify. Answer: The rate of change in quiz scores is an increase of about 4.3 points per week. **Rate of Change**

SUMMER CAMP The graph shows the number of campers enrolled at a summer camp during its first five years of operation. Find the rate of change from Year 2 to Year 5.

- A. 53.8
- **B.** 67.9
- **C.** 70.8

71.7

Rate of Change

EXAMPLE Compare Rates of Change

INCOME The table shows the yearly incomes of two families. Compare the rates of change.

Voor	Income (\$)		
Tear	Millers	Joneses	
2001	49,000	50,000	
2002	51,000	52,000	
2003	52,500	54,500	
2004	55,000	57,000	

Millers rate of change = $\frac{\text{change in } y}{\text{change in } x}$ = 55,000 - 49,000

 $=\frac{55,000-49,000}{2004-2001} \ \text{or} \ \textbf{2000}$

Rate of Change EXAMPLE **Compare Rates of Change** change in y Joneses rate of change = change in x 57,000 - 50,000or 2333.33 2004 - 2001 **Answer:** The income of the 58 **Dollars** (Thousands) Joneses increases at a 56 Joneses faster rate than the 54 52 income of the Millers. 50 A steeper line on the Millers 48 graph indicates a greater rate of change 2001200220032004 for the Joneses. Year
Rate of Change

INCOME The table shows the yearly incomes of two families. Compare the rates of change.

- A. The Brown's income increases at a faster rate than the Green's income.
- B. The Green's income increases at a faster rate than the Brown's income.
- C. The Green's income decreases at a faster rate than the Brown's income.
- D. The incomes of both families increase at the same rate.

Voor	Income (\$)			
fear	Browns	Greens		
1998	45,000	43,000		
1999	48,500	46,000		
2000	51,000	49,500		
2001	55,000	54,000		

0%

RESOURCES

Rate of Change

Real-World EXAMPLE

Negative Rate of Change

Chapter RESOURCES

COOKIES Natalie sold 100 cookies in 5 hours. The graph shows the relationship between the hours spent selling and the number of cookies that remained. Find the rate of change.

rate of change

number of cookies remaining

hours spent selling cookies

$$=\frac{0-100}{5-0}$$

Answer: The rate of change is –20 cookies per hour or a decrease of 20 cookies for each hour selling.

Rate of Change

SCIENCE In an experiment, Julia allows water to drip from a graduated glass tube. The table shows the volume of water in the tube *v* after *t* seconds. Find the rate of change. Interpret its meaning.

- –1.2; The volume decreases by 1.2 mL each second.
- B. -0.83; The volume decreases by 0.83 mL each second.
- C. 0.83; The volume increases by 0.83 mL each second.
- D. 1.2; The volume increases by 1.2 mL each second.

Time (s)	Volume (mL)
0	50
5	44
10	38
15	32

0%

Chapter

RESOURCES

7-3

CONCEPT SUMMARY Rates of Change					
Rate of Change positive		zero	negative		
Real-Life Meaning	increase	no change	decrease		
Graph	slants upward	horizontal line	y slants downward		

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 7-3)

Main Ideas and Vocabulary

Example 1: Use a Graph to Find a Constant Rate of Change

Example 2: Use Graphs to Identify Proportional Linear Relationships

Key Concept: Direct Variation

Example 3: Use Direct Variation to Solve Problems

Chapter RESOURCES

Concept Summary: Proportional Linear Relationships

Main Ideas

 Identify proportional and nonproportional relationships by finding a constant rate of change.

> Chapter RESOURCES

• Solve problems involving direct variation.

New Vocabulary

- linear relationship
- constant rate of change
- direct variation
- constant of variation

Use a Graph to Find a Constant Rate of Change

SOCCER The graph shows Yen's soccer goals for the tenweek season. Find the constant rate of change from Week 2 to Week 8. Describe what the rate means.

EXAMPLE

rate of change = $\frac{\text{change in soccer goals}}{\text{change in time}}$

$$=\frac{5-1}{8-2}$$

From week 2 to week 8, the number of goals changes from 1 to 5.

Chapter RESOURCES

EXAMPLE

Use a Graph to Find a Constant Rate of Change

Answer: $\frac{2}{3}$; For every 3 week interval, Yen increases his score by 2 goals.

Chapter RESOURCES

Constant Rate of Change and Direct Variation

WEATHER The snow water equivalent (SWE) is a common measure of the amount of water contained within a snowpack. It can be thought of as the depth of water that would result if you melted the entire snowpack. Find the constant rate of change for the snow water equivalent in the graph shown. Describe what the rate means.

HECK Your Progress

- 0.2; The snow water equivalent is 0.2 times the snow depth.
- B. 1.2; The snow water equivalent is 1.2 times the snow depth.
- C. 2.4; The snow water equivalent is 2.4 times the snow depth.
- D. 5; The snow water equivalent is 5 times the snow depth.

0%

Chapter RESOURCES 0%

Snow Water Equivalent

Use Graphs to Identify Proportional Relationships

JOGGING The distance that a jogger runs is recorded in the table. Determine if there is a proportional linear relationship between the time and distance.

EXAMPLE

Time (min)	Distance (mi)
X	y y
15	12
30	22
45	30
60	34

Chapter RESOURCES

Determine if the ratio of each *y*-value (distance) compared to the corresponding *x*-value (time) is the same.

EXAMPLE

Use Graphs to Identify Proportional Relationships

2	Distance y	<u>12</u>	22	_ 11	30	_ 2	34	_ 17
	time x	15	30	15	45	3	60	30

Answer: No, the ratio $\frac{\text{distance}}{\text{time}}$ is not the same for every pair of values.

CHECK Your Progress

SHIPPING The charge for shipping CDs from an online store is based on the number of CDs in the package. Determine if there is a proportional linear relationship between the shipping charge and the number of CDs.

CDs	Shipping (\$)
1	1.99
2	2.98
3	3.97
4	4.96

- A. Yes, since the number of CDs is proportional to the shipping charge.
- B. Yes, since the charge for each additional CD is \$0.99.
 - No, since the shipping charge is not proportional to the number of CDs.
- D. No, since the shipping charge is not equal to the number of CDs.

Real-World EXAMPLE

Use Direct Variation to Solve Problems

> Chapter RESOURCES

- A. LANDSCAPING As it is being dug, the depth of a wide hole for a backyard pond is recorded on a table. Write an equation that relates time and hole depth.
 - **Step 1** Find the value of k using the equation y = kx. Choose any point in the table. Then solve for k.
 - y = kxDirect variation8 = k(10)Replace y with 8 and x with 10.

Time (min)	Hole Depth (in.)
X	у
10	8
20	15
30	24
40	32

Real-World EXAMPLE

Use Direct Variation to Solve Problems

- $\frac{8}{10} = k$ Divide each side by 10.
 - 0.8 = k Simplify.
 - **Step 2** Use *k* to write an equation.
 - y = kx Direct variation
 - y = 0.8x Replace k with 0.8.

Answer: y = 0.8x

Use Direct Variation to Solve Problems

> Chapter RESOURCES

B. Predict how long it will take to dig a depth of 36 inches.

- y = 0.8x Write the direct variation equation.
- 36 = 0.8x Replace y with 36.
- $\frac{36}{0.8} = x$ Divide each side by 0.8.
 - 45 = x Simplify.

Answer: 45 minutes

CHECK Your Progress

172

BUSINESS The graph shows the number of frequent customer points a book store customer receives for each dollar spent in the store. Write an equation that relates the spending *s* and the points *p*. Then predict how many points a customer receives for a purchase of \$34.40.

Spending (\$)	Points
10.60	53
15.80	79
22.20	111
28.60	143

$$\mathbf{A.} \quad \boldsymbol{p} = \mathbf{5}\boldsymbol{s};$$

B.
$$p = 5s; 220$$

C.
$$s = 5p; 172$$

D. *s* = 5*p*; 220

Chapter RESOURCES

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Slope

Five-Minute Check (over Lesson 7-4)

Main Idea and Vocabulary

Example 1: Use Rise and Run to Find Slope

Example 2: Use a Graph to Find Slope

Key Concept: Slope

Example 3: Positive and Negative Slopes

Example 4: Zero and Undefined Slopes

Example 5: Standardized Test Example: Compare Slopes

> Chapter RESOURCES

Main Idea

Slope

• Find the slope of a line.

Chapter RESOURCES →

New Vocabulary

slope

Chapter RESOURCES

EXAMPLE Use a Graph to Find Slope

A. Find the slope of the line.

Slope

Definition of slope

 $(x_1, y_1) = (0, 1)$ $(x_2, y_2) = (1, 4)$

Chapter RESOURCES

Answer: The slope is 3.

EXAMPLE Use a Graph to Find Slope

B. Find the slope of the line.

Slope

 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \frac{3 - 1}{-3 - 3}$ $m = \frac{2}{-6} \text{ or } -\frac{1}{3}$

Definition of slope

 $m = \frac{3-1}{-3-3} \qquad (x_1, y_1) = (3, 1)$ $(x_2, y_2) = (-3, 3)$

Chapter RESOURCES

Answer: The slope is $-\frac{1}{2}$.

х

Chapter RESOURCES

Slope

EXAMPLE Positive and Negative Slopes

A. Find the slope of the line that passes through the following pair of points. B(2, 7), C(-3, -2)

Slope

Definition of slope

$$(x_1, y_1) = (2, 7)$$

 $(x_2, y_2) = (-3, 2)$

Chapter RESOURCES

Answer: The slope is $\frac{9}{5}$.

EXAMPLE Positive and Negative Slopes

B. Find the slope of the line that passes through the following pair of points. F(-5, 1), G(-3, -6)

Slope

 $m = \frac{-6 - 1}{-3 - (-5)} \qquad (x_1, y_1) = (-5, 1)$ $(x_2, y_2) = (-3, -6)$

> Chapter RESOURCES

Definition of slope

Answer: The slope is $-\frac{7}{2}$.

Chapter RESOURCES

ckPoint

0%

Chapter RESOURCES

ckPoint

EXAMPLE Zero and Undefined Slopes

A. Find the slope of the line.

Slope

 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \frac{-3 - (-3)}{2 - (-3)}$ $m = \frac{0}{5} \text{ or } 0$

Definition of slope

$$(x_1, y_1) = (-3, -3)$$

 $(x_2, y_2) = (2, -3)$

Chapter RESOURCES

Answer: The slope is 0.

EXAMPLE Zero and Undefined Slopes

B. Find the slope of the line.

Slope

$$(x_1, y_1) = (2, -2)$$

 $(x_2, y_2) = (2, 3)$

 $m = \frac{5}{0}$

Chapter RESOURCES

Division by 0 is undefined. So, the slope is undefined. Answer: The slope is undefined.

Slope

Compare Slopes

Chapter RESOURCES

- Two highway routes connect City A and City B. The first route rises 4 yards vertically for every 30-mile stretch. The second route rises 8 yards vertically for every 70-mile stretch. Which statement is true?
 - A The first route is steeper than the second route.
 - B The second route is steeper than the first route.
 - C Both routes have the same steepness.
 - D You cannot determine which route is steeper.

Read the Test Item

To compare the steepness of the routes, find the slopes.

Slope

- MULTIPLE-CHOICE TEST ITEM There are two hiking trails that connect a nature center to a waterfall. The first trail rises vertically 3 feet for every 40-foot stretch. The second trail rises vertically 5 feet for every 30-foot stretch. Which statement is true?
 - A. The first trail is steeper than the second trail.
 - B,
- The second trail is steeper than the first trail.
- C. Both trails have the same steepness.
- D. You cannot determine which trail is steeper.

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

25

Lesson Menu

Five-Minute Check (over Lesson 7-5)

Main Ideas and Vocabulary

Example 1: Find the Slope and y-Intercept

Example 2: Write an Equation in Slope-Intercept Form

> Chapter RESOURCES

Example 3: Graph an Equation

Example 4: Real-World Example

Main Ideas

- Determine slopes and *y*-intercepts of lines.
- Graph linear equations using the slope and y-intercept.

Chapter RESOURCES

New Vocabulary

- y-intercept
- slope-intercept form

EXAMPLE Find the Slope and *y*-Intercept

State the slope and the *y*-intercept of the graph of $y = \frac{1}{2}x + 3$.

 $y = \frac{1}{2}x + 3$ y = mx + bAnswer: The slope of the graph is $\frac{1}{2}$, and the y-intercept is 3.

EXAMPLE Write an Equation in Slope-Intercept Form

State the slope and the *y*-intercept of the graph of -4x + 5y = -10.

-4x + 5y = -10 Write the original equation.

-4x + 5y + 4x = -10 + 4x Add 4x to each side.

5y = -10 + 4x Simplify.

 $y = -2 + \frac{4}{5}x$ Divide each side by 5.

Slope-Intercept Form

EXAMPLE Write an Equation in Slope-Intercept Form

2

E5

$$y = \frac{4}{5}x + (-2)$$

$$\int \\ y = mx + b$$

Write the equation in slope-intercept form.

$$m=rac{4}{5},\ b=-2$$

Chapter RESOURCES

Answer: The slope of the graph is $\frac{4}{5}$, and the *y*-intercept is -2.

-6

EXAMPLE Graph an Equation

Step 2 Graph the y-intercept point at (0, 9)

Step 3 Write the slope – 3

as $\frac{-3}{1}$. Use it to

locate a second point on the line.

 $m=\frac{-3}{1}$

change in y : down 3 units change in x : right 1 unit

Another point on the line is at (1, 6).

Step 4 Draw a line through the two points.

6 Graph -2x + 3y = 12 using the slope and y-intercept.

Real-World EXAMPLE

A. BAKING A school group making cookies for a bake sale spends \$75 on ingredients and then sells the cookies for \$5 a dozen. The amount earned y can be represented by the equation y = 5x - 75, where x equals the number of dozens sold.

Chapter RESOURCES

Graph the equation.

First, find the slope and the *y*-intercept. slope = 5 *y*-intercept = -75

Answer: The *y*-intercept –75 represents the cost of the ingredients. Slope 5 represents the dollars earned per dozen cookies.

A. T-SHIRTS A T-shirt company spends \$150 on materials to make T-shirts and then sells the shirts for \$12 each. The amount earned y can be represented by the equation y = 12x - 150, where x represents the number of shirts sold. Graph the equation.

D. y-intercept –150 represents cost of materials; slope 12 represents number of shirts sold.

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Lesson Menu

Five-Minute Check (over Lesson 7-6)

<u>Main Idea</u>

Example 1: Write Equations From Slope and y-Intercept

Example 2: Write an Equation From a Graph

Example 3: Write an Equation to Make a Prediction

Chapter RESOURCES

Example 4: Write an Equation Given Two Points

Example 5: Write an Equation From a Table

Main Idea

• Write equations given the slope and *y*-intercept, a graph, a table, or two points.

EXAMPLE

Write Equations From Slope and y-Intercept

A. Write an equation in slope-intercept form for the line.

slope =
$$-\frac{1}{4}$$
, *y*-intercept = 7

$$y = mx + b$$
 Slope-intercept form

Answer:
$$y = -\frac{1}{4}x + 7$$
 Replace *m* with $-\frac{1}{4}$ and *b* with 7.

EXAMPLE

Write Equations From Slope and y-Intercept

B. Write an equation in slope-intercept form for the line. slope = 2, y-intercept = 0

y = mx + b Slope-intercept form

$$y=2x+(0)$$

Replace *m* with 2 and *b* with 0.

Answer: y = 2x

Simplify.

A. Write an equation in slope-intercept form for the line. slope = -3, y-intercept = -5

A. y = -3x + 5

B.
$$3x + y = -5$$

C.
$$y = -5x - 3$$

D,
$$y = -3x - 5$$

B. Write an equation in slope-intercept form for the line. slope = 0, y-intercept = 9

A. y = x + 9

$$\textbf{B}, y = 9$$

C. y = -9

D.
$$y = 9x$$

EXAMPLE Write an Equation From a Graph

Write an equation in slope-intercept form for the line graphed.

The *y*-intercept is -4. From (0, -4), you can go up one unit and to the right one unit to another point on the line. So, the slope is 1.

EXAMPLE Write an Equation From a Graph

0

$$y = 1x + (-4)$$

y = mx + b

Replace *m* with 1 and *b* with –4.

Answer:
$$y = x - 4$$

Simplify.

Writing Linear Equations

Write an equation in slopeintercept form for the line graphed.

A.
$$y = -\frac{2}{5}x + 3$$

B. $y = \frac{2}{5}x + 3$
C. $\frac{2}{5}x + y = 3$
D. $y = 3x - \frac{2}{5}$

eckPoint

Chapter RESOURCES

0%

EXAMPLE Write an Equation to Make a Prediction

BUSINESS The owners of the Good Times Eatery surveyed their customers to find out where they lived. They learned that for each 5-mile radius from their restaurant, 30 fewer people visited them. They had 150 patrons in the area immediately surrounding the diner. Predict the number of customers who lived 20 miles away.

Explore

You know the rate of change of number of customers to each 5-mile radius (slope) and the number of customers in the area immediately surrounding the diner (*y*-intercept). Make a table of ordered pairs.

Distance, (mi), <i>x</i>	Number of Patrons, <i>y</i>
0	150
5	120
10	90
15	60

EXAMPLE Write an Equation to Make a Prediction

) Plan

Write an equation to show the relationship between the distance *x* and the number of customers *y*. Then, substitute the distance of 20 miles into the equation to find the number of customers.

Solve **Step 1** Find the slope *m*. $m = \frac{\text{change in } y}{1 \text{ change in } y}$ decrease of 30 customers change in $x \leftarrow$ increase of 5 miles $\frac{-30}{5}$ Simplify. -6 Chapter RESOURCES

EXAMPLE Write an Equation to Make a Prediction

Step 2 Find the *y*-intercept *b*.

(x, y) = (distance, customers)= (0, b)

When the distance is 0 miles, the number of customers is 150. So, the *y*-intercept is 150.

Step 3 Write the equation.

y = mx + b Slope-intercept form

y = -6x + 150 Replace *m* with -6 and *b* with 150.

EXAMPLE Write an Equation to Make a Prediction

Step 4 Substitute the distance of 20 miles.

y = -6x + 150 Write the equation.

y = -6(20) + 150 Replace x with 20.

Chapter RESOURCES

y = 30 Simplify.

Answer: At a distance of 20 miles, the number of customers is 30.

Writing Linear Equations

CHECK Your Progress

WEATHER Attendance at an outdoor sporting event is affected by the temperature outside. When the outside temperature is 0°F, the attendance is 12 people. For every increase in temperature of 20 degrees, the attendance increases by 100 people. Predict the attendance if the temperature is 60°F.

0%

B. 300

D. 412

EXAMPLE Write an Equation Given Two Points

Write an equation for the line that passes through (7, 0) and (6, 3).

Step 1 Find the slope *m*.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

 $=\frac{3-0}{6-7}$

 $=\frac{3}{-1}$ or -3

Definition of slope

$$(x_1, y_1) = (7, 0)$$

 $(x_2, y_2) = (6, 3)$

EXAMPLE Write an Equation Given Two Points

Step 2 Find the *y*-intercept *b*. Use the slope and the coordinates of either point.

$$0 = -3(7) + b$$

Replace (x, y) with (7, 0) and *m* with -3.

21 = b Simplify.

Step 3 Substitute the slope and *y*-intercept.

$$y = mx + b$$
 Slope-intercept form

$$y = -3x + 21$$
 Replace *m* with -3 and
b with 21.

Chapter RESOURCES

Answer: y = -3x + 21

EXAMPLE Write an Equation From a Table

Use the table of values to write an equation in slope-intercept form.

Step 1 Find the slope *m*. Use the coordinates of any two points.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{10 - 16}{-1 - (-2)}$$
$$= \frac{-6}{1} \text{ or } -6$$

Definition of slope $(x_1, y_1) = (-2, 16)$

$$(x_2, y_2) = (-1, 10)$$

Writing Linear Equations

EXAMPLE Write an Equation From a Table

Step 2 Find the y-intercept b. Use the slope and the coordinates of either point.

y = mx + b16 = -6(-2) + b Slope-intercept form

Chapter RESOURCES

Replace (x, y) with (-2, 16) and *m* with -6.

4 = b Simplify.

Step 3 Substitute the slope and y-intercept.

y = mx + bSlope-intercept formy = -6x + 4Replace m with -6 and
b with 4.

Answer: y = -6x + 4

Writing Linear Equations

Use the table of values to write an equation in slope-intercept form.

X	y
-6	4
-3	2
3	-2
6	-4

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

-8

Lesson Menu

Five-Minute Check (over Lesson 7-7)

Main Ideas and Vocabulary

Example 1: Make Predictions from a Line of Fit

Example 2: Make Predictions from an Equation

Main Ideas

- Draw lines of fit for sets of data.
- Use lines of fit to make predictions about data.

Chapter RESOURCES

New Vocabulary

• line of fit

Prediction Equations

EXAMPLE **Make Predictions from a Line of Fit**

A. AGRICULTURE The table shows the amount of land in U.S. Farms from 1980 to 2000.

Make a scatter plot and draw a line of fit for the data.

Year	Land (million acres)
1980	1039
1985	1012
1990	986
1995	963
2000	943

EXAMPLE Make Predictions from a Line of Fit

B. Use the line of fit to predict the amount of land in the year 2010.

Extend the line so that you can find the *y* value for an *x* value of 2010. The *y* value for 2010 is about 892. So, a prediction for the amount of farm land in 2010 is approximately 892 million acres.

Chapter RESOURCES

Answer: about 892 million acres

Prediction Equations

HECK Your Progress

A. RETAIL The table shows the number of laptop computers sold at a local computer store from 1998 to 2001. Make a scatter plot and draw a line of fit for the data.

D. A line of fit can not be drawn since the data points are not in a straight line.

Year	Number of Laptops Sold
1998	215
1999	298
2000	395
2001	430

EXAMPLE Make Predictions from an Equation

A. INTERNET The scatter plot shows the number of U.S. households (millions) with internet access. Write an equation in slope-intercept form for the line of fit.

Step 1

First, select two points on the line and find the slope. Notice that the two points chosen are not original data points. We have chosen (1995, 10) and (1999, 34).

Chapter

RESOURCES

Prediction Equations

EXAMPLE

Make Predictions from an Equation

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$m = \frac{34 - 10}{1999 - 1995}$$
$$m = \frac{24}{100} \text{ or } 6$$

Definition of slope

 $(x_1, y_1) = (1995, 10)$ $(x_2, y_2) = (1999, 34)$

 $m = \frac{24}{4}$ or 6 Simplify.

Step 2 Next, find the *y*-intercept.

y = mx + bSlope-intercept form10 = 6(1995) + bReplace (x, y) with
(1995, 10) and m with 6.-11,960 = bSimplify.

Chapter RESOURCES

Answer: y = 6x - 11,960

EXAMPLE Make Predictions from an Equation

B. Predict the number of U.S. households that will have internet in the year 2010.

y = 6x - 11,960 Write the equation of the line of fit.

y = 6(2010) - 11,960 Replace x with 2010.

Chapter RESOURCES

y = 100 Simplify.

Sample answer: 100 million households

Prediction Equations

HECK Your Progress

A. TEMPERATURE The scatter plot shows the heating bill for the month of January for different size houses. Write an equation in slope-intercept form for the line of fit drawn. Use the data points (1000, 50) and (3500, 250).

Square Footage

0%

🗖 A 🗖 B 🗖 C 🗖 D

Chapter

RESOURCES

A.
$$y = 0.1x - 50$$

B.
$$y = 0.08x + 30$$

C.
$$y = 0.08x - 30$$

D.
$$y = \frac{1}{15}x - \frac{50}{3}$$

Enclosible Lesson Click the mouse button to return to the

Chapter Menu.

Functions and Graphing

Chapter Resources Menu

CheckPoint Five-Minute Checks

Image Bank

Brain

C^Oncepts in **MOtion**

Graphing Equations with Two Variables

Slope and Intercept

Image Bank

HAPTE

To use the images that are on the following three slides in your own presentation:

- **1.** Exit this presentation.
- 2. Open a chapter presentation using a full installation of Microsoft[®] PowerPoint[®] in editing mode and scroll to the Image Bank slides.
- **3.** Select an image, copy it, and paste it into your presentation.

A pair of sneakers that normally sells for \$85 is on sale at a 20 percent discount. What is the sale price of the sneakers?

B. \$78

D. \$17

🗖 A 🗆 B 🗖 C 🗖 D

0%

What is the annual interest rate if Jim invests \$2400 for 3 years and earns \$450 in interest?

- C. 5.65 percent
- D. 5.62 percent

0%

Determine whether the relation {(-2, -2), (0, 1), (-2, 3), (4, 5)} is a function.

Determine whether the relation {(4, -4), (-4, 4), (5, -5), (-5, 5), (1, 5)} is a function.

B. no

🗆 A 🔳 B

Oetermine whether the relation shown in the table is a function.

_0% ⊦0%

🗆 A 🔳 B

A. yes

Determine whether the relation shown in the graph is a function.

🗛 yes

B. no

🗆 A 🔳 B

The relation {(3, 5), (2, -3), (1, 0), (-4, 0), (-2, 5)} is not a function when which ordered pair is added to the set?

🗖 A 🗆 B 🗖 C 🗖 D

Refer to the table. Which of the following shows the solution of the given equation for the values given in the table?

x	y=3x-1	у	(x, y)
-2	3(-2) - 1		
0			
2			
4			

Δ	
-7	ļ

x	y=3x-1	у	(x, y)
-2	3(-2) - 1	5	(2, 5)
0	3(0) - 1	-7	(0, -7)
2	3(2) — 1	11	(2,11)
4	3(4) - 1	-1	(4, -1)

B.	x	y=3x-1	У	(x, y)
	-2	3(-2) - 1	-7	(-2, -7)
	0	3(0) - 1	-1	(0, -1)
	2	3(2) – 1	5	(2, 5)
	4	3(4) - 1	1	(4, 1)

C	
U .	
	Γ

x	y = 3x - 1	У	(x, y)
-2	3(-2) - 1	5	(2, 5)
0	3(0) – 1	2	(0, 2)
2	3(2) – 1	7	(2, 7)
4	3(4) - 1	13	(4, 13)

x	y = 3x - 1	У	(x, y)
-2	3(-2) - 1	-7	(-2, -7
0	3(0) - 1	-1	(0, -1
2	3(2) - 1	5	(2, 5)
4	3(4) - 1	11	(4, 11)

Sind two solutions of the equation y = 2x - 4 and write the solutions as ordered pairs.

D. (2, -3), (3, 2)

- Find two solutions of the equation x + y = 12 and write the solutions as ordered pairs.
 - A. (4, 8), (14, 2)
 - **B.** (4, 16), (7, 5)

D. (4, 16), (14, 2)

The equation y = 23x describes the approximate number of miles y that a car can go on x gallons of gas. About how many miles can the car go on 20 gallons of gas?

A. 500 miles

- C. 43 miles
- **D.** 1.15 miles

■ A ■ B ■ C ■ D

Find the rate of change for the linear function represented in the graph.

A.

increase of 20 miles per gallon

- B. decrease of 20 miles per gallon
- C. increase of 10 miles per gallon
- D. decrease of 10 miles per gallon

0%

Find the rate of change for the linear function represented in the table.

- A. decrease of 1 degree per hour
- B. increase of 1 degree per hour

decrease of 2 degrees per hour

D. increase of 2 degrees per hour

Time (h)	Temperature (°F)
X	У
0	40
1	38
2	36
3	34

- A ski lift is transporting skiers from the base of the mountain to a point near the top of the mountain. After 3 minutes, the lift had traveled 200 feet. After 6 minutes, it had traveled 400 feet. Find the rate of change.
 - A. 100 feet per minute
 - **B**,
- 66.7 feet per minute
- C. 60 feet per minute
- **D.** 55.7 feet per minute

Standardized Test Practice

- The table shows the relationship between time and the distance traveled on a family trip. Which is the best estimate for the rate of change for the family from 1–4 hours?
 - A. 55 miles per hour
 - **B.** 57 miles per hour
 - C. 60 miles per hour

Time (h)	Distance (mi)
X	У
1	59
2	123.2
3	187.4
4	251.6

- Find the constant rate of change for the linear function.
 - A. \$1.50 per bag

- \$2.00 per bag
- **C.** \$2.50 per bag
- D. \$3.00 per bag

Suppose y varies directly with x. Write an equation relating x and y if y = 6 when x = 8.

A.
$$y = 48x$$

B.
$$y = \frac{4}{3}x$$

C.
$$y = 2x$$

$$(\mathbf{D}, y = \frac{3}{4}x$$

Suppose y varies directly with x. Write an equation relating x and y if y = -20 when x = 5.

$$A. \quad y = -\frac{1}{4}x$$

B.
$$y = -4x$$

C.
$$y = \frac{1}{4}x$$

D. y = 4x

The cost of fencing varies directly with the number of feet of fencing purchased. If 1 foot of fencing costs \$1.75, find the cost of 200 feet.

- **B.** \$300.00
- **C.** \$135.00
- **D.** \$115.00

Find the slope of the line that passes through the points *E*(1, 4) and *F*(5, –2).

Find the slope of the line that passes through the points G(0, -7) and H(2, -7).

A. undefined

B. 1

D. –1

Find the slope of the line that passes through the points *J*(0, 0) and *K*(4, –4).

6 The slope of a line passing through the point (5, -2) is undefined. Through which other point does the line pass?

State the slope and the y-intercept for the graph of the equation y = x + 5.

B. slope =
$$-1$$
, *y*-intercept = -5

C. slope =
$$-5$$
, *y*-intercept = -1

D

2 State the slope and the *y*-intercept for the graph of

the equation
$$y = \frac{1}{2}x - 3$$
.
A. slope $= \frac{1}{2}$, *y*-intercept $= 3$

slope =
$$\frac{1}{2}$$
, *y*-intercept = -3

C. slope =
$$-3$$
, *y*-intercept = $\frac{1}{2}$

D. slope = 3, *y*-intercept =
$$\frac{1}{2}$$

State the slope and the *y*-intercept for the graph of the equation *x* + *y* = 4.

- A. slope = 1, *y*-intercept = 4
- **B.** slope = 4, *y*-intercept = -1
- **C.** slope = -1, *y*-intercept = 4
- **D.** slope = 4, *y*-intercept = 1

Identify the graph of y = 3x + 1 using the slope and the y-intercept.

0%

C

0%

0

eckPoint

5 The printer charged a flat rate of \$65.00 to print invitations, plus an additional charge of \$0.15 per invitation for the art on them. Write an equation to show the total cost *t* of buying *x* invitations.

A.
$$t = 65x + 0.15$$

B.
$$t = 0.15x + 65$$

- **C.** x = 0.15t + 65
- **D.** x = 65t + 0.15

(6) Write 3x + 2y = 6 in slope-intercept form.

$$A. \quad x = \frac{2}{3}y - 2$$

B.
$$y = -\frac{2}{3}x - 3$$

C.
$$x = 2 - \frac{2}{3}y$$

D
$$y = -\frac{3}{2}x + 3$$

0%

🗖 A 🗆 B 🗖 C 🗖 D

Write an equation in slope-intercept form for the line if its slope = 1 and *y*-intercept = -1.

A.
$$y = x + 1$$

B.
$$y = -x - 1$$

C.
$$y = x - 1$$

D. y = -x + 1

Write an equation in slope-intercept form for the line passing through the pair of points (1, 1) and (-1, -7).

$$(A) \quad y = 4x - 3$$

B.
$$y = 3x + 4$$

C.
$$y = 4x - 27$$

D.
$$y = 3x + 27$$

Write an equation in slope-intercept form for the table of values.

x	-2	0	2	4
У	5	3	1	-1

A.
$$y = -x + 1$$

B.
$$y = -x + 3$$

C.
$$y = x - 3$$

D. y = x

Standardized Test Practice

The charges for a long distance telephone company are shown in the table. Which equation shows the cost y for x minutes of phone calls in a month?

Charges per Month			
Flat rate \$5.00			
Per minute			
of calling \$0.07			

A.
$$y = 0.07x + 5$$

B.
$$y = 5x + 0.007$$

C.
$$y = 7x + 5$$

D. y = 0.07x - 5

