

Functions and Graphing

Chapter Menu

Lesson 7-1 Functions
Lesson 7-2 Representing Linear Functions
Lesson 7-3 Rate of Change
Lesson 7-4 Constant Rate of Change and Direct Variation

Lesson 7-5 Slope
Lesson 7-6 Slope-Intercept Form
Lesson 7-7 Writing Linear Equations
Lesson 7-8 Prediction Equations

Lesson Menu

Five-Minute Check (over Chapter 6)
Main Idea and Vocabulary
Example 1: Ordered Pairs and Tables as Functions
Example 2: Use a Graph to Identify Functions
Example 3: Real-World Example

Functions

Main Ideas

- Determine whether relations are functions.
- Use functions to describe relationships between two quantities.

New Vocabulary

- function
- vertical line test

EXAMPLE Ordered Pairs and Tables as Functions

(1) A. Determine whether the relation is a function. Explain.
$\{(-3,-3),(-1,-1),(0,0),(-1,1),(3,3)\}$

Answer: No; -1 in the domain is paired with both -1 and 1 in the range.

EXAMPLE Ordered Pairs and Tables as Functions

(1) B. Determine whether the relation is a function. Explain.

x	7	6	5	2	-3	-6
\boldsymbol{y}	2	4	6	4	2	-2

Answer: Yes; each x value is paired with only one y value.

Far Functions

CHECK Your Progress

(1) A. Determine whether each relation is a function. Explain.
$\{(2,5),(4,-1),(3,1),(6,0),(-2,-2)\}$
(A. Yes; each x value is paired with only one y value.
B. No; -2 is in the domain and in the range.
C. No; 2 in the domain is paired with 5 and -2 in the range.

D. no; not a relation

Functions

Clleck Your Progress

(1) B. | x | 3 | 1 | -1 | -3 | 1 | -5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 5 | 4 | 3 | -4 | 2 | 1 |

A. Yes; each x value is paired with only one y value.
B. No; $\mathbf{1}$ is in the domain and in the range.
(C.)

No; 1 in the domain is paired with 4 and 2 in the range.

D. no; not a relation

EXAMPLE Use a Graph to Identify Functions

(2) Determine whether the graph is a function. Explain.

Answer: Yes; it passes the vertical line test.

Far Functions

CHECK Your Progress:

(2) Determine whether the graph is a function. Explain.
A. Yes; it passes the vertical line test.
B. Yes; each y value is paired with two x values.
C. No; it does not pass the vertical line test.
D. cannot be determined without specific ordered pairs

Functions

Real-World EXAMPLE

(3) A. BUSINESS The table shows the number of boxes made.

Number of Hours	Number of Boxes
0	0
10	3000
20	6000
30	9000

Do these data represent a function? Explain.
Answer: Yes; for each 10 hours, only one amount of boxes is made.

Functions

Rea-World EXAMPLE

(3) B. Describe how box production is related to hours of operation.

Number of Hours	Number of Boxes
0	0
10	3000
20	6000
30	9000

Answer: As the number of hours increases, the number of boxes produced increases.
(3) A. BUSINESS The table shows the number of chairs made. Do these data represent a function? Explain.
A. Yes; each domain value is

Number of Hours	Number of Chairs
5	120
10	240
15	360
20	480

B. Yes; there are two range values for one domain value.
C. No; there is one range value for each domain value.
D. No; a domain value is paired with two range values.
(3) B. BUSINESS The table shows the number of chairs made. Describe how chair production is related to hours of operation.
A. As hours decrease, the number of chairs increases.

Number of Hours	Number of Chairs
5	120
10	240
15	360
20	480

B. As hours increase, the
number of chairs increases.
C. As hours increase, the
number of chairs decreases.
B. As hours increase, the
number of chairs increases.
C. As hours increase, the
number of chairs decreases.
B. As hours increase, the
number of chairs increases.
C. As hours increase, the
number of chairs decreases.
B. As hours increase, the
number of chairs increases.
C. As hours increase, the
number of chairs decreases.
D. Chair production is not related to hours of operation.

0\%

Lesson Menu

Five-Minute Check (over Lesson 7-1)
Main Ideas and Vocabulary
Example 1: Use a Table of Ordered Pairs
Example 2: Solve an Equation for y
Example 3: Graph a Linear Equation
Concept Summary: Representing Functions

Main Ideas

- Solve linear equations with two variables.
- Graph linear equations using ordered pairs.

New Vocabulary

- linear equation

EXAMPLE Use a Table of Ordered Pairs

(1) Find four solutions of $y=4 x+3$.

Choose four values for x. Then substitute each value into the equation to solve for y. There are many possible solutions. The solutions you find depend on which x values you choose.

\boldsymbol{x}	$\boldsymbol{y}=4 \boldsymbol{x}+\mathbf{3}$	\boldsymbol{y}	(x, y)
0	$y=4(0)+3$	3	$(0,3)$
1	$y=4(1)+3$	7	$(1,7)$
2	$y=4(2)+3$	11	$(2,11)$
3	$y=4(3)+3$	15	$(3,15)$

EXAMPLI Use a Table of Ordered Pairs

(1) Sample Answer: Four possible solutions are (0,3), $(1,7),(2,11)$, and $(3,15)$.

ClIECK Your Progress

(1) Find four solutions of $y=2 x-4$.
A. $(1,-2),(3,2),(5,1)$, and
$(7,10)$
B. $(-2,0),(0,-4),(2,0)$, and
$(4,4)$
C. (0, -4), (1, -2), (2, 2), and
$(3,-1)$
D. $(0,-4),(1,-2),(2,0)$, and

$(3,2)$
(2) BUSINESS At a local software company, Level 1 employees x earn \$48,000 and Level 2 employees y earn $\$ 24,000$. Find four solutions of $48,000 x+$ $24,000 y=216,000$ to determine how many employees at each level the company can hire for \$216,000.

First, rewrite the equation by solving for y.

Real-World EXAMPLE Solve an Equation for y

(2) $48,000 x+24,000 y=216,000$

Write the equation.

$$
y=9-2 x
$$

Simplify.

Real-World EXAMPLE Solve an Equation for y

(2) Choose four x values and substitute them into $y=9-2 x$.

\boldsymbol{x}	$\boldsymbol{y}=9-2 x$	\boldsymbol{y}	(x, y)
0	$y=9-2(0)$	9	$(0,9)$
1	$y=9-2(1)$	7	$(1,7)$
2	$y=9-2(2)$	5	$(2,5)$
3	$y=9-2(3)$	3	$(3,3)$

Sample Answer: (0,9), (1,7), (2, 5), and (3, 3)

$$
0 \text { Level 1, } 9 \text { Level } 2
$$

1 Level 1, 7 Level 2
2 Level 1, 5 Level 2
3 Level 1, 3 Level 2

$-1 / 2$
 Representing Linear Functions

CHECK Your Progress

BOOKS At a local bookstore, hardbacks are on sale for $\$ 6$ and paperbacks are on sale for $\$ 3$. Bob has $\$ 42$ to spend on books. Find four solutions to determine how many books of each type Bob can buy with his $\$ 42$.
A. 0 hardbacks, 42 paperbacks

3 hardbacks, 24 paperbacks
5 hardbacks, 12 paperbacks
7 hardbacks, 0 paperbacks
B. 0 hardbacks, 14 paperbacks

1 hardbacks, 12 paperbacks
2 hardbacks, 10 paperbacks 3 hardbacks, 8 paperbacks
C. 0 hardbacks, 42 paperbacks

3 hardbacks, 24 paperbacks 5 hardbacks, 9 paperbacks 7 hardbacks, 7 paperbacks
D. 0 hardbacks, 14 paperbacks 1 hardbacks, 8 paperbacks 2 hardbacks, 2 paperbacks 3 hardbacks, -4 paperbacks

EXAMPLE Graph a Linear Equation

(3) Graph $y=x-3$ by plotting ordered pairs.

First, find ordered pair solutions.

x	$y=x-3$	y	(x, y)
-1	$y=-1-3$	-4	$(-1,-4)$
0	$y=0-3$	-3	$(0,-3)$
1	$y=1-3$	-2	$(1,-2)$
2	$y=2-3$	-1	$(2,-1)$

Four solutions are $(-1,-4),(0,-3),(1,-2)$, and $(2,-1)$.

EXAMPIE Graph a Linear Equation

(3) Plot these ordered pairs and draw a line through them. Note that the ordered pair for any point on this line is a solution of $y=x-3$. The line is a complete graph of the function.

Answer:

EXAMPLE Graph a Linear Equation

(3) Check It appears from the graph that $(4,1)$ is also a solution. Check this by substitution.

$$
\begin{array}{ll}
y=x-3 & \text { Write the equation. } \\
1 \stackrel{?}{=} 4-3 & \begin{array}{l}
\text { Replace } x \text { with } 4 \text { and } y \\
\text { with } 1 .
\end{array} \\
1=1 \checkmark & \text { Simplify. }
\end{array}
$$

dichteck rour Progerss

(3) Graph $y=5-x$ by plotting ordered pairs.

0\%
(C.

D.

$-1-2$
 Representing Linear Functions

CONCEPT SUMMARY

Representing Functions

Words \quad The value of y is 3 less than the corresponding value of x.

Table of Ordered Pairs	x	y
	0	-3
1	-2	
2	-1	
3	0	

Graph

Equation $\quad y=x-3$

Lesson Menu

Five-Minute Check (over Lesson 7-2)
Main Ideas and Vocabulary
Example 1: Real-World Example
Example 2: Compare Rates of Change
Example 3: Negative Rate of Change
Concept Summary: Rates of Change

Main Ideas

- Find rates of change.
- Solve problems involving rates of change.

New Vocabulary

- rate of change

Rate of Change

Rea-World EXAMPLE

(1) SCHOOL The graph shows Jared's quiz scores for the first five weeks after he joined a study group. Find the rate of change from Week 2 to Week 5.

rate of change $=\frac{89-76}{5} \longleftarrow$ change in quiz score 5-2 change in time

$$
\approx 4.3 \quad \text { Simplify } .
$$

Answer: The rate of change in quiz scores is an increase of about 4.3 points per week.

sheHECK Your Progress

(1) SUMMER CAMP The graph shows the number of campers enrolled at a summer camp during its first five years of operation. Find the rate of change from Year 2 to Year 5.
A. 53.8

B. 67.9
C. 70.8
(D.) 71.7

EXAMPIE Compare Rates of Change

(2) INCOME The table shows the yearly incomes of two families. Compare the rates of change.

Year	Income (\$)	
	Millers	Joneses
2001	49,000	50,000
2002	51,000	52,000
2003	52,500	54,500
2004	55,000	57,000

Millers rate of change $=\frac{\text { change in } y}{\text { change in } x}$

$$
=\frac{55,000-49,000}{2004-2001} \text { or } 2000
$$

EXAMPLE Compare Rates of Change

(2) Joneses rate of change $=\frac{\text { change in } y}{\text { change in } x}$

$$
=\frac{57,000-50,000}{2004-2001} \text { or } 2333.33
$$

Answer: The income of the Joneses increases at a faster rate than the income of the Millers. A steeper line on the graph indicates a greater rate of change for the Joneses.

(2) INCOME The table shows the yearly incomes of two families. Compare the rates of change.
A. The Brown's income increases at a faster rate than the Green's income.
B. The Green's income increases at a
B. The Green's income increases at a
faster rate than the Brown's income.
C. The Green's income decreases at a
faster rate than the Brown's income.
C. The Green's income decreases at a
faster rate than the Brown's income.
D. The incomes of both families increase at the same rate.

Year	Income (\$)	
	Browns	Greens
1998	45,000	43,000
1999	48,500	46,000
2000	51,000	49,500
2001	55,000	54,000

Real-World EXAMPLE Negative Rate of Change

(3) COOKIES Natalie sold 100 cookies in 5 hours. The graph shows the relationship between the hours spent selling and the number of cookies that remained. Find the rate of change.

rate of change
$=$ number of cookies remaining
hours spent selling cookies
$=\frac{0-100}{5-0}$

Real-World EXAMPLE Negative Rate of Change

$$
\text { (3) } \begin{aligned}
& =\frac{-100}{5} \\
& =-20
\end{aligned}
$$

Answer: The rate of change is -20 cookies per hour or a decrease of 20 cookies for each hour selling.

CHECK Your Progress

(3)

SCIENCE In an experiment, Julia allows water to drip from a graduated glass tube. The table shows the volume of water in the tube v after t seconds. Find the rate of change. Interpret its meaning.

Time (s)	Volume (mL)
0	50
5	44
10	38
15	32

A. -1.2; The volume decreases by 1.2 mL each second.
B. -0.83 ; The volume decreases by 0.83 mL each second.
C. 0.83 ; The volume increases by 0.83 mL each second.
D. 1.2; The volume increases by 1.2 mL each second.

$7-3$ Rate of Change

CONCEPT SUMMARY			Rates of Change
Rate of Change	positive	zero	negative
Real-Life Meaning	increase	no change	decrease
Graph			

Lesson Menu

Five-Minute Check (over Lesson 7-3)
Main Ideas and Vocabulary
Example 1: Use a Graph to Find a Constant Rate of Change
$\frac{\text { Example 2: Use Graphs to Identify Proportional }}{\text { Linear Relationships }}$
Key Concept: Direct Variation
Example 3: Use Direct Variation to Solve Problems
Concept Summary: Proportional Linear Relationships

Main Ideas

- Identify proportional and nonproportional relationships by finding a constant rate of change.
- Solve problems involving direct variation.

New Vocabulary

- linear relationship
- constant rate of change
- direct variation
- constant of variation

Use a Graph to Find a Constant Rate of Change

(1) SOCCER The graph shows Yen's soccer goals for the tenweek season. Find the constant rate of change from Week 2 to Week 8. Describe what the rate means.

rate of change $=\frac{\text { change in soccer goals }}{\text { change in time }}$

$$
=\frac{5-1}{8-2} \quad \begin{aligned}
& \text { From week } 2 \text { to week 8, the } \\
& \text { number of goals changes } \\
& \text { from } 1 \text { to } 5 .
\end{aligned}
$$

Use a Graph to Find a Constant Rate of Change

$$
\begin{aligned}
& =\frac{4}{6} \\
& =\frac{2}{3}
\end{aligned}
$$

Answer: $\frac{2}{3}$; For every 3 week interval, Yen increases his score by 2 goals.

Constant Rate of Change and Direct Variation

C) C, leck Your Progress

WEATHER The snow water equivalent (SWE) is a common measure of the amount of water contained within a snowpack. It can be thought of as the depth of water that would result if you melted the entire snowpack. Find the constant rate of change for the snow water equivalent in the graph shown. Describe what the rate means.

Snow Water Equivalent

A. 0.2; The snow water equivalent is 0.2 times the snow depth.
B. 1.2; The snow water equivalent is 1.2 times the snow depth.
C. 2.4; The snow water equivalent is $\mathbf{2 . 4}$ times the snow depth.
D. 5; The snow water equivalent is 5 times the snow depth.

Use Graphs to Identify Proportional Relationships

(2) JOGGING The distance that a jogger runs is recorded in the table. Determine if there is a proportional linear relationship between the time and distance.

Time (min)	Distance (mi)
x	y
15	12
30	22
45	30
60	34

Determine if the ratio of each y-value (distance) compared to the corresponding x-value (time) is the same.

EXAMPDE

Use Graphs to Identify Proportional Relationships
(2) Distance y time x ($\frac{12}{15} \quad \frac{22}{30}=\frac{11}{15} \quad \frac{30}{45}=\frac{2}{3} \quad \frac{34}{60}=\frac{17}{30}$

Answer: No, the ratio $\frac{\text { distance }}{\text { time }}$ is not the same for every pair of values.

CHECK Your Progress

(2)

SHIPPING The charge for shipping CDs from an online store is based on the number of CDs in the package. Determine if there is a proportional linear relationship between the shipping charge and the number of CDs.

CDs	Shipping (\$)
1	1.99
2	2.98
3	3.97
4	4.96

A. Yes, since the number of CDs is proportional to the shipping charge.
B. Yes, since the charge for each additional CD is $\$ 0.99$.
C. No, since the shipping charge is not proportional to the number of CDs.
D. No, since the shipping charge is not equal to the number of CDs.

$-1=4$
 Constant Rate of Change and Direct Variation

KEY CONCEPT

Direct Variation
Words A direct variation is a relationship in which the ratio of y to x is a constant, k. We say y varies directly with x.

Symbols $\quad y=k x$, where $k \neq 0$
Example $y=2 x$

Model

Use Direct Variation to Solve Problems

(3) A. LANDSCAPING As it is being dug, the depth of a wide hole for a backyard pond is recorded on a table. Write an equation that relates time and hole depth.

Step 1 Find the value of k using the equation $y=k x$.

Time $(\mathbf{m i n})$	Hole Depth (in.)
x	y
10	8
20	15
30	24
40	32

Choose any point in the table. Then solve for k.
$y=k x$
Direct variation
$8=k(10) \quad$ Replace y with 8 and x with 10.

Use Direct Variation to Solve

 Problems(3) $\frac{8}{10}=k$

Divide each side by 10.
$0.8=k$
Simplify.
Step 2 Use k to write an equation.
$y=k x \quad$ Direct variation
$y=0.8 x \quad$ Replace k with 0.8 .
Answer: $y=0.8 x$

Real-World EXAMPLE

Use Direct Variation to Solve

 Problems(3) B. Predict how long it will take to dig a depth of 36 inches.
$y=0.8 x$ Write the direct variation equation.
$36=0.8 x$ Replace y with 36 .
36
$\frac{36}{0.8}=x \quad$ Divide each side by 0.8.
$45=x \quad$ Simplify.
Answer: 45 minutes

C) ClECK Your Progress

(3)BUSINESS The graph shows the number of frequent customer points a book store customer receives for each dollar spent in the store. Write an equation that relates the spending s and the points p. Then predict how many points a customer receives for a

Spending (\$)	Points
10.60	53
15.80	79
22.20	111
28.60	143

A. $p=5 s ; 172$
B. $p=5 s ; 220$
C. $s=5 p ; 172$
D. $s=5 p ; 220$

CONCEPT SUMMARY

Proportional Linear Relationships

Words Two quantities a and b have a proportional linear relationship if they have a constant ratio and a constant rate of change.

Symbols $\frac{a}{b}$ is constant and $\frac{\text { change in } b}{\text { change in } a}$ is constant.

Lesson Menu

Five-Minute Check (over Lesson 7-4)
Main Idea and Vocabulary
Example 1: Use Rise and Run to Find Slope
Example 2: Use a Graph to Find Slope
Kev Concept: Slope
Example 3: Positive and Negative Slopes
Example 4: Zero and Undefined Slopes

Example 5: Standardized Test Example: Compare Slopes

Main Idea

- Find the slope of a line.

New Vocabulary

- slope

Real-World EXAMPLE Use Rise and Run to Find Slope

(1) HILLS Find the slope of a hill that rises 30 feet for every horizontal change of 150 feet.

$$
\begin{aligned}
\text { slope } & =\frac{\text { rise }}{\text { run }} & & \text { Write the formula. } \\
& =\frac{30 \text { feet }}{150 \text { feet }} & & \text { rise }=30 \text { feet, run }=150 \text { feet } \\
& =\frac{1}{5} & & \text { Simplify. }
\end{aligned}
$$

Answer: The slope of the hill is $\frac{1}{5}$ or 0.2 .

CHECK Your Progress

(1) Find the slope of a hill that rises 40 feet for every horizontal change of 100 feet.

$$
\begin{aligned}
& \text { A. } \frac{5}{2} \\
& \text { B. } \frac{2}{5} \\
& \text { C. } \frac{2}{3} \\
& \text { D. } \frac{3}{5}
\end{aligned}
$$

88/CheckPoint

EXAMPLE Use a Graph to Find Slope

(2) A. Find the slope of the line.

$$
\begin{aligned}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Definition of slope } \\
m=\frac{4-1}{1-0} & \left(x_{1}, y_{1}\right)=(0,1) \\
m=\frac{3}{1} \text { or } 1 & \left(x_{2}, y_{2}\right)=(1,4)
\end{aligned}
$$

Answer: The slope is 3.

EXAMPLE Use a Graph to Find Slope

(2) B. Find the slope of the line.

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Definition of slope } \\
m=\frac{3-1}{-3-3} & \left(x_{1}, y_{1}\right)=(3,1) \\
m=\frac{2}{-6} \text { or }-\frac{1}{3} &
\end{array}
$$

Answer: The slope is $-\frac{1}{3}$.

STCHECK Your Progress,

(2) A. Find the slope of the line.
(A.) $\frac{7}{3}$
B. $-\frac{7}{3}$
C. $\frac{3}{7}$
D. $-\frac{3}{7}$

0\%

STCHECK Your Progress,

(2) B. Find the slope of the line.

> A. $\frac{1}{2}$
> B. $-\frac{1}{2}$
> C. $-\frac{5}{6}$
(D. $-\frac{6}{5}$

KEY CONCEPT

Words The slope m of a line passing through points at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the ratio of the difference in y-coordinates to the corresponding difference in x-coordinates.
Symbols $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, where $x_{2} \neq x_{1}$

Model

RESOURGES

EXAMPLE
 Positive and Negative Slopes

(3) A. Find the slope of the line that passes through the following pair of points. $B(2,7), C(-3,-2)$

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Definition of slope } \\
m=\frac{-2-7}{-3-2} & \left(x_{1}, y_{1}\right)=(2,7) \\
m=\frac{-9}{-5} \text { or } \frac{9}{5} & \left(x_{2}, y_{2}\right)=(-3,2)
\end{array}
$$

Answer: The slope is $\frac{9}{5}$.

EXAMPIE
 Positive and Negative Slopes

(3) B. Find the slope of the line that passes through the following pair of points. $F(-5,1), G(-3,-6)$

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Definition of slope } \\
m=\frac{-6-1}{-3-(-5)} & \left(x_{1}, y_{1}\right)=(-5,1) \\
m=\frac{-7}{2} & \left(x_{2}, y_{2}\right)=(-3,-6)
\end{array}
$$

Answer: The slope is $-\frac{7}{2}$.

CHECK Your Progress

(3) A. Find the slope of the line that passes through the following pair of points. $A(-2,4), B(5,-1)$
A. $\frac{5}{7}$
(B.) $-\frac{5}{7}$

0\%
C. 1
D. $-\frac{3}{7}$

$$
\square \mathbf{A} \square \mathbf{B} \square \mathbf{C} \square \mathbf{D}
$$

88/CheckPoint

Clleck Your Progress

(3) B. Find the slope of the line that passes through the following pair of points. $M(-3,-4), N(4,2)$
$\frac{6}{7}$
0\%
B. $\frac{7}{6}$
C. -2
D. -6
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$

Coms iftr

EXAMPLE Zero and Undefined Slopes

(4) A. Find the slope of the line.

$$
\begin{aligned}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Definition of slope } \\
m & =\frac{-3-(-3)}{2-(-3)} \\
m & =\frac{0}{5} \text { or } 0
\end{aligned}
$$

Answer: The slope is 0 .

EXAMPIE Zero and Undefined Slopes

(4) B. Find the slope of the line.

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) & =(2,-2) \\
\left(x_{2}, y_{2}\right) & =(2,3) \\
m & =\frac{5}{\square 9}
\end{aligned}
$$

Division by 0 is undefined. So, the slope is undefined. Answer: The slope is undefined.

SCHECK Your Progress

(4) A. Find the slope of the line.
A. 2
(B.) 0
C. $\frac{1}{2}$
D. undefined

STCHECK Your Progress,

(4) B. Find the slope of the line.
A. 0
B. $-\frac{1}{3}$

C. -1
D. undefined

(2) Math Chapter

RESOURES

Standardized Test EXAMPLE Compare Slopes

(5) Two highway routes connect City A and City B. The first route rises 4 yards vertically for every 30 -mile stretch. The second route rises 8 yards vertically for every $70-m i l e ~ s t r e t c h . ~ W h i c h ~ s t a t e m e n t ~ i s ~ t r u e ? ~$
A The first route is steeper than the second route.
B The second route is steeper than the first route.
C Both routes have the same steepness.
D You cannot determine which route is steeper.

Read the Test Item
To compare the steepness of the routes, find the slopes.

Standardized Test EXAMPLE Compare Slopes

(5) Solve the Test item

first route

$$
\begin{aligned}
\text { slope } & =\frac{\text { rise }}{\text { run }} \\
& =\frac{4 \text { yards }}{30 \text { miles }}
\end{aligned}
$$

second route

$$
\text { slope }=\frac{\text { rise }}{\text { run }}
$$

$$
=\frac{8 \text { yards }}{70 \text { miles }}
$$

$$
\text { or about } 0.000065
$$

$$
=\frac{4 \text { yards }}{52,800 \text { yards }} \quad \begin{aligned}
& 30 \text { miles }= \\
& 52,800 \text { yards }
\end{aligned}=\frac{8 \text { yards }}{123,200 \text { yards }}
$$

$$
\text { or about } 0.000076
$$

Standardized Test EXAMPLE Compare Slopes

(5) $0.000076>0.000065$, so the first route is steeper than the second route.

Answer: The answer is A.
(5) MULTIPLE-CHOICE TEST ITEM There are two hiking trails that connect a nature center to a waterfall. The first trail rises vertically 3 feet for every 40 -foot stretch. The second trail rises vertically 5 feet for every 30 -foot stretch. Which statement is true?
A. The first trail is steeper than the second trail.
B. The second trail is steeper than the first trail.
C. Both trails have the same steepness.

D. You cannot determine which trail is steeper.

Lesson Menu

Five-Minute Check (over Lesson 7-5)
Main Ideas and Vocabulary
Example 1: Find the Slope and y-Intercept
Example 2: Write an Equation in Slope-Intercept Form
Example 3: Graph an Equation
Example 4: Real-World Example

Main Ideas

- Determine slopes and y-intercepts of lines.
- Graph linear equations using the slope and y-intercept.

New Vocabulary

- y-intercept
- slope-intercept form

EXAWPLE Find the Slope and y-Intercept

(1) State the slope and the y-intercept of the graph

$$
\text { of } y=\frac{1}{2} x+3
$$

$$
\begin{array}{ll}
y=\frac{1}{2} x+3 & \text { Write the orig } \\
y=m x+b & m=\frac{1}{2}, b=3
\end{array}
$$

Answer: The slope of the graph is $\frac{1}{2}$, and the y-intercept is 3 .

STCHECK Your Progress,

(1) State the slope and the y-intercept of the graph of $y=2 x-7$.
(A.) $m=2 ; b=-7$
B. $m=2 ; b=7$
C. $m=7 ; b=2$
D. $m=-7 ; b=2$

EXAMPLE
 Write an Equation in Slope-Intercept Form

(2) State the slope and the y-intercept of the graph of $-4 x+5 y=-10$.

$$
-4 x+5 y=-10 \quad \text { Write the original equation. }
$$

$-4 x+5 y+4 x=-10+4 x \quad$ Add $4 x$ to each side.

$$
\begin{aligned}
& 5 y=-10+4 x \\
& y=-2+\frac{4}{5} x \quad \text { Simplify. } \\
& \text { Divide each side by } 5 .
\end{aligned}
$$

EXAMPIE Write an Equation in Slope-Intercept Form

$$
\begin{array}{ll}
y=\frac{4}{5} x+(-2) & \begin{array}{l}
\text { Write the equation in } \\
\text { slope-intercept form. }
\end{array} \\
y=m x+b & m=\frac{4}{5}, b=-2
\end{array}
$$

Answer: $\begin{aligned} & \text { The slope of the graph is } \frac{4}{5} \text {, and the } \\ & y \text {-intercept is }-2 .\end{aligned}$

COncepts in MQtion

BrainPOP:
Slope and Intercept

CHECK Your Progress

(2) State the slope and the y-intercept of the graph of $-5 x+y=1$.
A. $m=-5 ; b=1$
(B.) $m=5 ; b=1$

0\%
C. $m=1 ; b=5$
D. $m=1 ; b=-5$

EXAMPLE Graph an Equation

(3) Graph $y=-3 x+9$ using the slope and y-intercept. Step 1 Find the slope and y-intercept.

$$
\text { slope }=-3 \quad y \text {-intercept }=9
$$

EXAMPLE Graph an Equation

(3) Step 2 Graph the y-intercept point at (0,9)

Step 3 Write the slope-3
as $\frac{-3}{1}$. Use it to
locate a second point on the line.

	$(0,9)$						
		+ 81					
		6					
		4					
		2					
-8-6-4		-4 0	24			$68 \vec{x}$	
		-4					

$$
m=\frac{-3}{1} \quad \frac{\text { change in } y: \text { down } 3 \text { units }}{\text { change in } x: \text { right } 1 \text { unit }}
$$

EXAMPLE Graph an Equation

(3) Another point on the line is at $(1,6)$.

Step 4 Draw a line through the two points.

STHECK Your Progress,

(3) Graph $-2 x+3 y=12$ using the slope and y-intercept.

Real-World EXAMPLE

(4) A. BAKING A school group making cookies for a bake sale spends $\$ 75$ on ingredients and then sells the cookies for $\$ 5$ a dozen. The amount earned y can be represented by the equation $y=5 x-75$, where x equals the number of dozens sold.
Graph the equation.
First, find the slope and the y-intercept.

$$
\begin{aligned}
& \text { slope }=5 \\
& y \text {-intercept }=-75
\end{aligned}
$$

Real-World EXAMPLE

(4) Plot the point at $(0,-75)$. Then go up 5 and right 1 . Connect these points.

Answer:

(4) B. Describe what the y-intercept and the slope represent.

Answer: The y-intercept -75 represents the cost of the ingredients. Slope 5 represents the dollars earned per dozen cookies.

$7-6$
 Slope-Intercept Form

- ClECK Your Progress

(4) A. T-SHIRTS A T-shirt company spends $\$ 150$ on materials to make T-shirts and then sells the shirts for $\$ 12$ each. The amount earned y can be represented by the equation $y=12 x-150$, where x represents the number of shirts sold. Graph the equation.

T-Shirt Sold
C.

T-Shirt Sold

T-Shirt Sold
D.

T-Shirt Sold

CHECK Your Progress

(4) B. Describe what the y-intercept and the slope represent.
A. y-intercept 150 represents number of shirts sold; slope 12 represents cost of materials.
B. y-intercept -150 represents cost of materials; slope 12 represents dollars earned per shirt.
C. y-intercept 150 represents dollars earned; slope 12 represents cost per shirt.
D. y-intercept $\mathbf{- 1 5 0}$ represents cost of materials; slope 12 represents number of shirts sold.

Lesson Menu

Five-Minute Check (over Lesson 7-6)
Main Idea
Example 1: Write Equations From Slope and y-Intercept
Example 2: Write an Equation From a Graph
Example 3: Write an Equation to Make a Prediction
Example 4: Write an Equation Given Two Points
Example 5: Write an Equation From a Table

Main Idea

- Write equations given the slope and y-intercept, a graph, a table, or two points.

EXAMPLE

Write Equations From Slope and y-Intercept
(1) A. Write an equation in slope-intercept form for the line.
slope $=-\frac{1}{4}, y$-intercept $=7$

$$
y=m x+b \quad \text { Slope-intercept form }
$$

Answer: $y=-\frac{1}{4} x+7 \quad$ Replace m with $-\frac{1}{4}$ and b with 7 .

EXAMPLE

Write Equations From Slope and y-Intercept
(1) B. Write an equation in slope-intercept form for the line.
slope $=2, y$-intercept $=0$

$$
y=m x+b \quad \text { Slope-intercept form }
$$

$$
y=2 x+(0) \quad \text { Replace } m \text { with } 2 \text { and } b
$$ with 0 .

Answer: $\quad y=2 x$
Simplify.

CHECK Your Progress

(1) A. Write an equation in slope-intercept form for the line.
slope $=-3, y$-intercept $=-5$
A. $y=-3 x+5$
B. $3 x+y=-5$
C. $y=-5 x-3$

D. $y=-3 x-5$

88/CheckPoint

CHECK Your Progress

(1) B. Write an equation in slope-intercept form for the line.
slope $=0, y$-intercept $=9$
A. $y=x+9$
B. $y=9$
C. $y=-9$

D. $y=9 x$

88/CheckPoint

EXAMPLE Write an Equation From a Graph

(2) Write an equation in slope-intercept form for the line graphed.

The y-intercept is -4 . From ($0,-4$), you can go up one unit and to the right one unit to another point on the line. So, the slope is 1 .

EXAMPLE Write an Equation From a Graph

$y=m x+b$
$y=1 x+(-4)$

Slope-intercept form

Replace m with 1 and b with -4.

Answer: $y=x-4$
Simplify.

STCHECK Your Progress,

(2) Write an equation in slopeintercept form for the line graphed.
(A.) $y=-\frac{2}{5} x+3$
B. $y=\frac{2}{5} x+3$
C. $\frac{2}{5} x+y=3$
D. $y=3 x-\frac{2}{5}$

EXAMPLE Write an Equation to Make a Prediction

(3) BUSINESS The owners of the Good Times Eatery surveyed their customers to find out where they lived. They learned that for each 5 -mile radius from their restaurant, 30 fewer people visited them. They had 150 patrons in the area immediately surrounding the diner. Predict the number of customers who lived 20 miles away.
Explore
You know the rate of change of number of customers to each 5 -mile radius (slope) and the number of customers in the area immediately surrounding the diner (y-intercept). Make a table of

Distance, $(\mathrm{mi}), \boldsymbol{x}$	Number of Patrons, \boldsymbol{y}
0	150
5	120
10	90
15	60

EXAMPLE
 Write an Equation to Make a Prediction

(3) Plan

Write an equation to show the relationship between the distance x and the number of customers y. Then, substitute the distance of 20 miles into the equation to find the number of customers.

Solve
Step 1 Find the slope m.

$$
\begin{array}{rlrl}
m & =\frac{\text { change in } y \longleftarrow}{\text { change in } x} \longleftarrow & \begin{array}{l}
\text { decrease of } 30 \text { customers }
\end{array} \\
& =\frac{-30}{5} & & \\
& =-6 & & \text { Simprease of } 5 \text { miles }
\end{array}
$$

EXAMPIE Write an Equation to Make a Prediction

(3) Step 2 Find the y-intercept b.

$$
\begin{aligned}
(x, y) & =(\text { distance }, \text { customers }) \\
& =(0, b)
\end{aligned}
$$

When the distance is 0 miles, the number of customers is 150 . So, the y-intercept is 150 .

Step 3 Write the equation.

$$
\begin{array}{ll}
y=m x+b & \text { Slope-intercept form } \\
y=-6 x+150 & \begin{array}{l}
\text { Replace } m \text { with }-6 \text { and } b \\
\text { with } 150 .
\end{array}
\end{array}
$$

EXAMPLE

Write an Equation to Make a Prediction

(3) Step 4 Substitute the distance of 20 miles.

$$
\begin{array}{ll}
y=-6 x+150 & \text { Write the equation. } \\
y=-6(20)+150 & \text { Replace } x \text { with } 20 .
\end{array}
$$

$$
y=30
$$

Simplify.
Answer: At a distance of 20 miles, the number of customers is 30 .
(3) WEATHER Attendance at an outdoor sporting event is affected by the temperature outside. When the outside temperature is $0^{\circ} \mathrm{F}$, the attendance is 12 people. For every increase in temperature of 20 degrees, the attendance increases by 100 people. Predict the attendance if the temperature is $60^{\circ} \mathrm{F}$.
A. 112

0\%
B. 300
C. 312
D. 412

EXAMPLE Write an Equation Given Two Points

(4) Write an equation for the line that passes through $(7,0)$ and $(6,3)$.

Step 1 Find the slope m.

$$
\begin{array}{rlrl}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Definition of slo } \\
& =\frac{3-0}{6-7} & \left(x_{1}, y_{1}\right)=(7,0) \\
& =\frac{3}{-1} \text { or }-3 & \left(x_{2}, y_{2}\right)=(6,3)
\end{array}
$$

EXAMPLE
 Write an Equation Given Two Points

(4) Step 2 Find the y-intercept b. Use the slope and the coordinates of either point.

$$
y=m x+b
$$

$$
0=-3(7)+b
$$

$21=b$
Simplify.

EXAMPLE Write an Equation Given Two Points

(4) Step 3 Substitute the slope and y-intercept.

$$
y=m x+b \quad \text { Slope-intercept form }
$$

$$
y=-3 x+21
$$

Replace m with -3 and b with 21.

Answer: $y=-3 x+21$

- carcck Your Progress

(4) Write an equation for the line that passes through $(4,-2)$ and ($-2,-14$).
A. $y=-8 x+30$
B. $y=\frac{8}{3} x-\frac{38}{2}$
C. $y=2 x+6$
D. $y=2 x-10$

$88 /$ CheckPoint

EXAMPLE Write an Equation From a Table

(5) Use the table of values to write an equation in slope-intercept form.

Step 1 Find the slope m. Use the coordinates of any two points.

x	y
-2	16
-1	10
0	4
1	-2

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{10-16}{-1-(-2)} \\
& =\frac{-6}{1} \text { or }-6
\end{aligned}
$$

Definition of slope
$\left(x_{1}, y_{1}\right)=(-2,16)$
$\left(x_{2}, y_{2}\right)=(-1,10)$

EXAMPIE Write an Equation From a Table

(5) Step 2 Find the y-intercept b. Use the slope and the coordinates of either point.

$$
\begin{aligned}
y & =m x+b \\
16 & =-6(-2)+b
\end{aligned}
$$

Slope-intercept form
Replace (x, y) with (-2 , 16) and m with -6 .

$$
4=b
$$

Simplify.
Step 3 Substitute the slope and y-intercept.

$$
\begin{aligned}
& y=m x+b \\
& y=-6 x+4
\end{aligned}
$$

Slope-intercept form
Replace m with -6 and b with 4 .

Answer: $y=-6 x+4$

C, IECK Your Progress

(5) Use the table of values to write an equation in slope-intercept form.
(A. $y=-\frac{2}{3} x$
B. $y=-\frac{2}{3} x-4$
C. $y=-\frac{2}{9} x+\frac{4}{3}$
D. $y=-\frac{2}{9} x+\frac{8}{3}$

Lesson Menu

Five-Minute Check (over Lesson 7-7)
Main Ideas and Vocabulary
Example 1: Make Predictions from a Line of Fit
Example 2: Make Predictions from an Equation

Prediction Equations

Main Ideas

- Draw lines of fit for sets of data.
- Use lines of fit to make predictions about data.

New Vocabulary

- line of fit

EXAMPLE Make Predictions from a Line of Fit

-

A. AGRICULTURE The table shows the amount of land in U.S. Farms from 1980 to 2000.

Make a scatter plot and draw a line of fit for the data.

Answer:

Year	Land (million acres)
1980	1039
1985	1012
1990	986
1995	963
2000	943

EXAMPL: Make Predictions from a Line of Fit

(1) B. Use the line of fit to predict the amount of land in the year 2010.
Extend the line so that you can find the y value for an x value of 2010. The y value for 2010 is about 892. So, a prediction for the amount of farm land in 2010 is approximately 892 million acres.

Answer: about 892 million acres

CHECK Your Progress

-

A. RETAIL The table shows the number of laptop computers sold at a local computer store from 1998 to 2001. Make a scatter plot and draw a line of fit for the data.
A.

D. A line of fit can not be drawn since the data points are not in a straight line.

Year	Number of Laptops Sold
1998	215
1999	298
2000	395
2001	430

C.

CHECK Your Progress

(1) B. Use the line of fit to predict the number of laptops sold in the year 2003.
A. about 600
(B.) about 650
C. about 700
D. cannot be determined from
 given information

EXAMPLE Make Predictions from an Equation

(2) A. INTERNET The scatter plot shows the number of U.S. households (millions) with internet access. Write an equation in slope-intercept form for the line of fit.

Step 1

First, select two points on the line and find the slope. Notice that the two points chosen are not original data points. We have chosen $(1995,10)$ and (1999, 34).

EXAMPLE Make Predictions from an Equation

(2) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& m=\frac{34-10}{1999-1995} \\
& m=\frac{24}{4} \text { or } 6
\end{aligned}
$$

Definition of slope

$$
\left(x_{1}, y_{1}\right)=(1995,10)
$$

$$
\left(x_{2}, y_{2}\right)=(1999,34)
$$

Simplify.
Step 2 Next, find the y-intercept.

$$
\begin{aligned}
y & =m x+b \\
10 & =6(1995)+b
\end{aligned}
$$

$$
-11,960=b
$$

Slope-intercept form
Replace (x, y) with
$(1995,10)$ and m with 6.
Simplify.

EXAMPLE
 Make Predictions from an Equation

(2) Step 3 Write the equation.

$$
y=m x+b
$$

Slope-intercept form
$y=6 x+(-11,960)$ Replace m with 6 and b with $-11,960$.

Answer: $y=6 x-11,960$

EXAMPLE
 Make Predictions from an Equation

(2) B. Predict the number of U.S. households that will have internet in the year 2010.

$$
\begin{array}{ll}
y=6 x-11,960 & \begin{array}{l}
\text { Write the equation of } \\
\text { the line of fit. }
\end{array}
\end{array}
$$

$$
y=6(2010)-11,960 \text { Replace } x \text { with } 2010 .
$$

$$
y=100
$$

Simplify.
Sample answer: 100 million households

CHECK Your Progress

(2) A. TEMPERATURE The scatter plot shows the heating bill for the month of January for different size houses. Write an equation in slope-intercept form for the line of fit drawn. Use the data points

Square Footage $(1000,50)$ and $(3500,250)$.
A. $y=0.1 x-50$
B. $y=0.08 x+30$
C. $y=0.08 x-30$
D. $y=\frac{1}{15} x-\frac{50}{3}$

ChIECK Your Progress:

(2) B. Predict the heating bill for a house that is $\mathbf{4 1 0 0}$ square feet in size.
A. about $\$ 256.67$
(B.) about $\$ 298.00$
C. about $\$ 358.00$

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

D. about $\$ 360.00$

Functions and Graphing

Chapter Resources Menu

E/CheckPoint Five-Minute Checks

?国 Math Tools

COncepts in MQtion

Interactive $+\frac{+\pi}{x} \div$ Graphing Equations with Two Variables
Brain
POP
Slope and Intercept

Lesson 7-1 (over Chapter 6)
Lesson 7-2 (over Lesson 7-1)
Lesson 7-3 (over Lesson 7-2)
Lesson 7-4 (over Lesson 7-3)
Lesson 7-5 (over Lesson 7-4)
Lesson 7-6 (over Lesson 7-5)
Lesson 7-7 (over Lesson 7-6)
Lesson 7-8 (over Lesson 7-7)

Functions and Graphing

Image Bank

To use the images that are on the following three slides in your own presentation:

1. Exit this presentation.
2. Open a chapter presentation using a full installation of Microsoft ${ }^{\circledR}$ PowerPoint ${ }^{\circledR}$ in editing mode and scroll to the Image Bank slides.
3. Select an image, copy it, and paste it into your presentation.

cuppres Functions and Graphing

Image Bank

anaprep Functions and Graphing

Image Bank

$\mid \leftarrow \leftarrow \Rightarrow$
(1) Express 24 inches to 6 feet in simplest form.
(A.) 1 to 3
B. 1 to 4
C. 3 to 1
D. 4 to 1

トヶ
(2) Express 0.045 as a percent.
A. 0.045 percent
B. 0.45 percent

C. 4.5 percent
D. 45 percent
(3) Express 65 percent as a fraction in simplest form.
A. $\frac{2}{3}$
B. $\frac{3}{5}$

0\%
C. $\frac{7}{10}$
(D. $\frac{13}{20}$

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

88/CheckPoint
FHF

(4) 30 is 40 percent of what number?
A. 85
B. 75
C. 60
D. 12

$\stackrel{1}{ }$

Crvo-Minute CHECK (over Chapter 6)

(5) A pair of sneakers that normally sells for $\$ 85$ is on sale at a 20 percent discount. What is the sale price of the sneakers?

A. $\$ 102$

B. $\$ 78 \quad{ }^{0 \%}$
C. $\$ 68$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. $\$ 17$

Standardized Test Practice

(6) What is the annual interest rate if Jim invests $\$ 2400$ for 3 years and earns $\$ 450$ in interest?
A. 6.25 percent 0%
B. 6.2 percent
C. 5.65 percent
D. 5.62 percent
（1）Determine whether the relation $\{(-2,-2),(0,1)$ ， $(-2,3),(4,5)\}$ is a function．

A．yes
（B．）no
$\square \mathrm{A} \square \mathrm{B}$
$8 / 8 /$ checkPoint
になった

(2) Determine whether the relation $\{(4,-4),(-4,4)$, $(5,-5),(-5,5),(1,5)\}$ is a function.
(A.) yes
B. no

Cive-Minute CHECK (over Lesson 7-1)

(3) Determine whether the relation shown in the table is a function.
A. yes

x	y
-1	-2
3	2
0	0
-1	2
-2	4

B. no

$$
\lceil 0 \%
$$

0\%

Functions and Graphing
 (f) FNo-Minute CHECK (over Lesson 7-1)

(4) Determine whether the relation shown in the graph is a function.
(A.) yes

B. no

$$
\left[\begin{array}{l}
0 \% \\
-0 \%
\end{array}\right.
$$

Functions and Graphing

C) FNo-Minute CHECK (over Lesson 7-1)

Standardized Test Practice

(5) The relation $\{(3,5),(2,-3),(1,0),(-4,0),(-2,5)\}$ is not a function when which ordered pair is added to the set?
A. $(0,-4)$
B. $(-3,2)$
C. $(3,-5)$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. $(-1,0)$

Functions and Graphing

CRVO-Minute CHECK (over Lesson 7-2)

(1) Refer to the table. Which of the following shows the solution of the given equation for the values given in the table?

x	$y=3 x-1$	y	(x, y)
-2	$3(-2)-1$		
0			
2			
4			

A.

x	$y=3 x-1$	y	(x, y)
-2	$3(-2)-1$	5	$(-2,5)$
0	$3(0)-1$	-7	$(0,-7)$
2	$3(2)-1$	11	$(2,11)$
4	$3(4)-1$	-1	$(4,-1)$

B.

x	$y=3 x-1$	y	(x, y)
-2	$3(-2)-1$	-7	$(-2,-7)$
0	$3(0)-1$	-1	$(0,-1)$
2	$3(2)-1$	5	$(2,5)$
4	$3(4)-1$	1	$(4,1)$

C.

x	$y=3 x-1$	y	(x, y)
-2	$3(-2)-1$	5	$(-2,5)$
0	$3(0)-1$	2	$(0,2)$
2	$3(2)-1$	7	$(2,7)$
4	$3(4)-1$	13	$(4,13)$

x	$y=3 x-1$	y	(x, y)
-2	$3(-2)-1$	-7	$(-2,-7)$
0	$3(0)-1$	-1	$(0,-1)$
2	$3(2)-1$	5	$(2,5)$
4	$3(4)-1$	11	$(4,11)$

CheckPoint

Fevo-Minute CHECK (over Lesson 7-2)
(2) Find two solutions of the equation $y=2 x-4$ and write the solutions as ordered pairs.
(A.) $(0,-4),(1,-2)$
B. $(1,-2),(2,-3)$

0\%

C. $(3,-2),(0,-4)$
D. $(2,-3),(3,2)$

Fevo-Minute CHECK (over Lesson 7-2)
(3) Find two solutions of the equation $x+y=12$ and write the solutions as ordered pairs.
A. $(4,8),(14,2)$

0\%
B. $(4,16),(7,5)$
C. $(4,8),(7,5)$
D. $(4,16),(14,2)$
$\square A \square B \square C \square D$
(4) The equation $y=23 x$ describes the approximate number of miles y that a car can go on x gallons of gas. About how many miles can the car go on 20 gallons of gas?

A. 500 miles

B. $\mathbf{4 6 0}$ miles
C. 43 miles
D. 1.15 miles

Frvo-Minute CHECK (over Lesson 7-2)
Standardized Test Practice
(5) Which is not a linear function?
A. $y=x$
B. $y+x=2$

0\%

C. $y=-4$
(D.) $y=\frac{3}{x}$

Functions and Graphing

F) Fivo-Minute CHECK (over Lesson 7-3)

(1) Find the rate of change for the linear function represented in the graph.
A. increase of $\mathbf{2 0}$ miles per gallon

B. decrease of $\mathbf{2 0}$ miles per gallon
C. increase of 10 miles per gallon
D. decrease of 10 miles per gallon

Functions and Graphing

Five-Minute CHECK (over Lesson 7-3)
(2) Find the rate of change for the linear function represented in the table.
A. decrease of 1 degree per hour

Time (h)	Temperature $\left({ }^{\circ} \mathrm{F}\right)$
x	y
0	40
1	38
2	36
3	34

B. increase of 1 degree per hour
C. decrease of 2 degrees per hour
D. increase of 2 degrees per hour

Five-Minute CHECK (over Lesson 7-3)
(3) A ski lift is transporting skiers from the base of the mountain to a point near the top of the mountain. After 3 minutes, the lift had traveled 200 feet. After 6 minutes, it had traveled 400 feet. Find the rate of change.
A. 100 feet per minute
B. 66.7 feet per minute
C. 60 feet per minute
D. 55.7 feet per minute

Standardized Test Practice

(4) The table shows the relationship between time and the distance traveled on a family trip. Which is the best estimate for the rate of change for the family from 1-4 hours?

Time (h)	Distance (mi)
x	y
1	59
2	123.2
3	187.4
4	251.6

A. 55 miles per hour
B. 57 miles per hour
C. 60 miles per hour

(D.) 64 miles per hour | 0% | 0% | 0% | 0% |
| :--- | :--- | :--- | :--- |
| | 0 | 0 | 0 |

0 Five-Minute CHECK (over Lesson 7-4)

(1) Find the constant rate of change for the linear function.
A. $\$ 1.50$ per bag
B. $\mathbf{\$ 2 . 0 0}$ per bag

Cotton Candy Sales

C. $\$ 2.50$ per bag
D. $\$ 3.00$ per bag

F) Fivo-Minute CHECK (over Lesson 7-4)

(2) Suppose y varies directly with x. Write an equation relating x and y if $y=6$ when $x=8$.
A. $y=48 x$
B. $y=\frac{4}{3} x$

0\%
\mid
C. $y=2 x$
(D. $y=\frac{3}{4} x$

0 Fivo-Minute chieck (over Lesson 7-4)

(3) Suppose y varies directly with x. Write an equation relating x and y if $y=-20$ when $x=5$.
A. $y=-\frac{1}{4} x$

0\%
(B.) $y=-4 x$
C. $y=\frac{1}{4} x$
D. $y=4 x$
(4) The cost of fencing varies directly with the number of feet of fencing purchased. If 1 foot of fencing costs $\$ 1.75$, find the cost of 200 feet.
B. $\$ 300.00$
C. $\$ 135.00$
D. $\$ 115.00$

C) Fivo-Minute CHECK (over Lesson 7-4)

Standardized Test Practice
(5) What is the y-intercept of the equation $y=0.5 x$?
(A.) 0
B. 0.5

C. 1
D. 2

Fivo-Minute CHECK (over Lesson 7-5)

(1) Find the slope of the line on the graph.
A. -1

C. 1
D. $\frac{9}{5}$

PRVO-Minute CHECK (over Lesson 7-5)
(2) Find the slope of the line that passes through the points $E(1,4)$ and $F(5,-2)$.

$$
\begin{aligned}
& \text { (A. }-\frac{3}{2} \\
& \text { B. }-\frac{1}{2}
\end{aligned}
$$

C. 2
D. 3
(3) Find the slope of the line that passes through the points $G(0,-7)$ and $H(2,-7)$.
A. undefined

0\%
B. 1
(C.) 0
D. -1

PRVO-Minute CHECK (over Lesson 7-5)
(4) Find the slope of the line that passes through the points $J(0,0)$ and $K(4,-4)$.
A. 1
B. $\frac{1}{4}$
C. $-\frac{1}{4}$
(D. -1

$8 /$ CheckPoint
$r \leftarrow \leftrightarrow \rightarrow$

Prvo-Minute CHECK (over Lesson 7-5)
(5) Find the slope of a line that decreases 4 units vertically for every 10 -unit horizontal increase.

$$
\begin{aligned}
& \text { A. }-\frac{5}{2} \\
& \text { B. }-\frac{2}{5} \\
& \text { C. } \frac{2}{5} \\
& \text { D. } \frac{5}{2}
\end{aligned}
$$

C) FNo-Minute CHECK (over Lesson 7-5)

Standardized Test Practice

(6) The slope of a line passing through the point $(5,-2)$ is undefined. Through which other point does the line pass?
A. $(-2,5)$

0\%
B. $(-5,-2)$
C. $(5,2)$
\square AロB■CロD
D. $(-5,2)$

Functions and Graphing

Five-Minute CHECK (over Lesson 7-6)
(1) State the slope and the y-intercept for the graph of the equation $y=x+5$.
A. slope $=5, y$-intercept $=1$
B. slope $=\mathbf{- 1}, y$-intercept $=\mathbf{- 5}$
C. slope $=-5, y$-intercept $=-1$
D. slope $=1, y$-intercept $=5$

トた

Functions and Graphing

Five-Minute CHECK (over Lesson 7-6)

(2) State the slope and the y-intercept for the graph of the equation $y=\frac{1}{2} x-3$.
A. \quad slope $=\frac{1}{2}, y$-intercept $=3$
(B.) slope $=\frac{1}{2}, y$-intercept $=-3$
C. slope $=-3, y$-intercept $=\frac{1}{2}$
D. \quad slope $=3, y$-intercept $=\frac{1}{2}$

Functions and Graphing

Five-Minute CHECK (over Lesson 7-6)
(3) State the slope and the y-intercept for the graph of the equation $x+y=4$.
A. slope $=1, y$-intercept $=4$

0\%
B. slope $=4, y$-intercept $=\mathbf{- 1}$
C. slope $=-1, y$-intercept $=4$
D. slope $=4, y$-intercept $=1$

Functions and Graphing

Five-Minute CHECK (over Lesson 7-6)

(4) Identify the graph of $y=3 x+1$ using the slope and the y-intercept.

B.

C.

D.

$888 /$ CheckPoint

Functions and Graphing

P) FNo-Minuite CHECK (over Lesson 7-6)

(5) The printer charged a flat rate of $\$ 65.00$ to print invitations, plus an additional charge of $\$ 0.15$ per invitation for the art on them. Write an equation to show the total cost t of buying x invitations.
A. $t=65 x+0.15$
(B.) $t=0.15 x+65$
C. $x=0.15 t+65$
D. $x=65 t+0.15$
$1 \leftarrow \leftarrow \rightarrow$

0 Five=Minute CHECK (over Lesson 7-6)

Standardized Test Practice

(6) Write $3 x+2 y=6$ in slope-intercept form.

$$
\text { A. } x=\frac{2}{3} y-2
$$

B. $y=-\frac{2}{3} x-3$
C. $x=2-\frac{2}{3} y$
(D.) $y=-\frac{3}{2} x+3$

(5) Fo-Minute CHECK (over Lesson 7-7)

(1) Write an equation in slope-intercept form for the line if its slope $=1$ and y-intercept $=-1$.
A. $y=x+1$
B. $y=-x-1$
(C.) $y=x-1$
D. $y=-x+1$

$88 /$ CheckPoint

(f) Fivo-Minute CHECK (over Lesson 7-7)

(2) Write an equation in slope-intercept form for the
line if its slope $=\frac{1}{4}, y$-intercept $=0$.
A. $y=\frac{1}{4}$

0\%
B. $y=4 x$
C. $y=x+\frac{1}{4}$

$$
\text { (D.) } y=\frac{1}{4} x
$$

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

CheckPoint

0 Five-Minute CHECK (over Lesson 7-7)

(3) Write an equation in slope-intercept form for the line passing through the pair of points $(1,1)$ and $(-1,-7)$.

$$
\text { (A.) } y=4 x-3
$$

0%
B. $y=3 x+4$
C. $y=4 x-27$
\square A \square B $\square \mathbf{C} \square \mathrm{D}$
D. $y=3 x+27$

0 Five-Minuto CHECK (over Lesson 7-7)

(4) Write an equation in slope-intercept form

x	-2	0	2	4
y	5	3	1	-1

A. $y=-x+1$
B. $\boldsymbol{y}=-\boldsymbol{x}+\mathbf{3}$
C. $y=x-3$

D. $y=x$
$88 /$ CheckPoint
$r+\leftrightarrow \rightarrow$

F) Fivo-Minute CHECK (over Lesson 7-7)

Standardized Test Practice

(5) The charges for a long distance telephone company are shown in the table. Which equation shows the cost y for x minutes of phone calls in a month?

Charges per Month	
Flat rate	$\$ 5.00$
Per minute of calling	$\$ 0.07$

A. $y=0.07 x+5$
B. $y=5 x+0.007$
C. $y=7 x+5$
D. $y=0.07 x-5$

