

Real Numbers and Right Triangles

Chapter Menu

Lesson 9-1 Squares and Square Roots
Lesson 9-2 The Real Number System
Lesson 9-3 Triangles
Lesson 9-4 The Pythagorean Theorem
Lesson 9-5 The Distance Formula
Lesson 9-6 Similar Figures and Indirect Measurement

Lesson Menu

Five-Minute Check (over Chapter 8)
Main Ideas and Vocabulary
Key Concept: Square Root
Example 1: Find Square Roots
Example 2: Find Square Roots with a Calculator
Example 3: Estimate Square Roots
Example 4: Real-World Example

Main Ideas

- Find squares and square roots.
- Estimate square roots.

New Vocabulary

- perfect square
- square root
- radical sign

Squares and Square Roots

KEY CONCEPT

Words A square root of a number is one of its two equal factors.
Symbols If $x^{2}=y$, then x is a square root of y.
Example Since $5 \cdot 5$ or $5^{2}=25,5$ is a square root of 25 .
Since $(-5) \cdot(-5)$ or $(-5)^{2}=25,-5$ is a square root of 25 .

EXAMPDE Find Square Roots

(1) A. Find $\sqrt{64}$.
$\sqrt{64}$ indicates the positive square root of 64 .
Since $8^{2}=64, \sqrt{64}=8$.

Answer: 8

EXAMPLE Find Square Roots

(1) B. Find $-\sqrt{121}$.
$-\sqrt{121}$ indicates the negative square root of 121.

Since $11^{2}=121,-\sqrt{121}=-11$.

Answer: -11

EXAMPLE Find Square Roots

(1) C. Find $\pm \sqrt{256}$.
$\pm \sqrt{256}$ indicates both square roots of 256 .
Since $16^{2}=256, \sqrt{256}=16$ and $-\sqrt{256}=-16$.

Answer: +16 and -16

EXAMPLE Find Square Roots

(1) D. Find $\sqrt{z^{2}}$.
$\sqrt{z^{2}}$ indicates the positive square root of z^{2}.
z may be negative, but $|z|$ is positive,
so $\sqrt{z^{2}}=|z|$.

Answer: $|z|$

shentec Your Progress:

(1) A. Find $\sqrt{25}$.
A. 624
B. 12.5
(C. 5
D. -5

88/CheckPoint

sh

(1) B. Find $-\sqrt{144}$.
A. 12
(B.) -12
C. -72
D. $\mathbf{- 2 0 , 7 3 6}$

sh CHEC Your Progress:

(1) C. Find $\pm \sqrt{16}$.
A. 4
B. -4
C. 4 and -4
D. 256 and -256

Sh

(1) D. Find $\sqrt{t^{2}}$.
(A.) $|t|$
B. t
C. $-t$
D. t and - t

EXAMPLE
 Find Square Roots with a Calculator

(2) A. Use a calculator to find $\sqrt{22}$ to the nearest tenth.

$$
\sqrt{22} \approx 4.7
$$

Round to the nearest tenth.

Answer: 4.7

EXAMPLE
 Find Square Roots with a Calculator

(2) B. Use a calculator to find $-\sqrt{319}$ to the nearest tenth.

2nd	$\sqrt{ }$	9	ENTER	17.86057109949

$$
-\sqrt{319} \approx-17.9
$$

Round to the nearest tenth.

Answer: -17.9

ClleCK Your Progress

（2）A．Use a calculator to find $\sqrt{71}$ to the nearest tenth．

（A．） 8.4

B． 8.43
0\％

C． 35.5

D． 5041

C) CriECK Your Progress

(2) B. Use a calculator to find $-\sqrt{38}$ to the nearest tenth.

$$
\text { A. }-1444
$$

B. -19
(C.) -6.2

$$
\text { D. }-6.16
$$

EXAMPLE Estimate Square Roots

(3) A. Estimate $\sqrt{22}$ to the nearest whole number.

- The first perfect square less than 22 is $16 . ~ \sqrt{16}=4$
- The first perfect square greater than 22 is $25 . \sqrt{25}=5$
- Plot each square on a number line.

The square root of 22 is between the whole numbers 4 and 5 . Since 22 is closer to 25 than 16, you can expect that $\sqrt{22}$ is closer to 5 than 4.

Answer: 5

Squares and Square Roots

EXAMPLE Estimate Square Roots

(3) B. Estimate $-\sqrt{319}$ to the nearest whole number.

- The first perfect square less than 319 is $289 \cdot \sqrt{289}=17$
- The first perfect square greater than 319 is 324 .
- Plot each square on a number line.

The negative square root of 319 is between the whole numbers -17 and -18 . Since 319 is closer to 324 than 289, you can expect that $-\sqrt{319}$ is closer to -18 than -17 .

Answer: -18

$$
\sqrt{324}=18
$$

CHECK Your Progress

(3) A. Estimate $\sqrt{54}$ to the nearest whole number.
A. 6
(B. 7

0\%
C. 8
D. 9

dentrck Your Progress:

(3) B. Estimate $-\sqrt{152}$ to the nearest whole number.
A. 12
B. -11

0\%
C. -12
D. -13

Real-World EXAMPLE

(4) SKYSCRAPER The tallest building in Houston, Texas is the J.P. Morgan Chase Tower, standing at 1,002 foot tall. How far can a person see from the top floor on a clear day?
Use the formula $D=1.22 \times \sqrt{A}$ where D is the distance in miles and A is the altitude, or height, in feet.
$D=1.22 \times \sqrt{A}$
$=1.22 \times \sqrt{1002}$
$\approx 1.22 \times 31.65$

Write the formula.
Replace A with 1002.
Evaluate the square root first.

Real-World EXAMPLE
(4) ≈ 38.6

Multiply.

Answer: On a clear day, a person could see about 38.6 miles.

Squares and Square Roots

CHECK Your Progress

(4) SKYSCRAPER A skyscraper stands 378 feet high. On a clear day, about how far could an individual standing on the roof of the skyscraper see? Round to the nearest tenth.
A. 23.2 miles
B. 23.3 miles
C. 23.7 miles
D. 24.4 miles

CheckPoint

Lesson Menu

Five-Minute Check (over Lesson 9-1)
Main Ideas and Vocabulary
Key Concept: Irrational Number
Example 1: Classify Real Numbers

Example 2: Compare Real Numbers on a Number Line

Example 3: Solve Equations
Example 4: Real-World Example

Main Ideas

- Identify and compare numbers in the real number system.
- Solve equations by finding square roots.

New Vocabulary

- irrational numbers
- real numbers

KEY CONCEPT

An irrational number is a number that cannot be expressed as $\frac{a}{b}$, where a and b are integers and b does not equal 0 .

EXAMPPE Classify Real Numbers

(1) A. Name all of the sets of numbers to which the real number $0.2 \overline{46}$ belongs.

Answer: This repeating decimal is a rational number because it is equivalent to $\frac{244}{990}$.

EXAMPLE Classify Real Numbers

(1) B. Name all of the sets of numbers to which the real number $\sqrt{225}$ belongs.

Answer: Since $\sqrt{225}=15$, this number is a natural number, a whole number, an integer, and a rational number.

EXAMPLE Classify Real Numbers

(1) C. Name all of the sets of numbers to which the real number $-\frac{72}{6}$ belongs.

Answer: Since $-\frac{72}{6}=-12$, this number is an integer and a rational number.

EXAMPLE Classify Real Numbers

(1) D. Name all of the sets of numbers to which the real number $\frac{14}{4}$ belongs.

$$
\begin{aligned}
\text { Answer : } & \text { Since } \frac{14}{4}=3.5, \text { this number is a terminating } \\
& \text { decimal and thus a rational number. }
\end{aligned}
$$

ClIECK Your Progress
(1) A. Name all the sets of numbers to which the real number $0.3 \overline{80}$ belongs.
(A.) rational number
B. irrational number
C. integer, rational number
D. natural number

ClIECK Your Progress
(1) B. Name all the sets of numbers to which the real number $-\sqrt{81}$ belongs.
A. rational number
B. irrational number
C. integer, rational number
D. natural number

CHECK Your Progress

(1) C. Name all the sets of numbers to which the real number $\frac{45}{9}$ belongs.
A. rational number
B. irrational number
C. integer, rational number
D. natural number, whole number, integer, rational number

CheckPoint

The Real Number System
CHIECK Your Progress
(1) D. Name all the sets of numbers to which the real number $\frac{19}{4}$ belongs.
(A.) rational number
B. irrational number
C. integer, rational number
D. natural number

EXAMPLE

Compare Real Numbers on a Number Line

(2) A. Replace \cdot with $<,>$, or $=$ to make $\sqrt{125} \cdot 11 \frac{7}{8}$ a true statement.
Express each number as a decimal. Then graph the number.
$\sqrt{125}=11.18033989 \ldots$
$11 \frac{7}{8}=11.875$

EXAMPLE

Compare Real Numbers on a Number Line

(2) Answer: Since $\sqrt{125}$ is to the left of $11 \frac{7}{8}, \sqrt{125}<11 \frac{7}{8}$.

EXAMPIE
 Compare Real Numbers on a Number Line

(2) B. Order $6 \frac{1}{4}, \sqrt{38}, 6 . \overline{5}$, and $\sqrt{36}$ from least to greatest.

Express each number as a decimal. Then graph the number.

$$
\begin{aligned}
6 \frac{1}{4} & =6.25 \\
\sqrt{38} & =6.164414003 \ldots \\
6 . \overline{5} & =6.5555555 \ldots \\
\sqrt{36} & =6
\end{aligned}
$$

EXAMPLE
 Compare Real Numbers on a Number Line

Answer : From least to greatest, the order

$$
\text { is } \sqrt{36}, \sqrt{38}, 6 \frac{1}{4}, 6 . \overline{5}
$$

Clleck Your Progress

(2) A. Replace \cdot with $<,>$, or $=$ to make $\sqrt{61} \bullet 7 \frac{3}{4}$ a true statement.
A. <
B. $>$

0\%
1
C. =
D. none of the above

Your Progress

(2) B. Order $5 \frac{2}{3}, \sqrt{26}, 5 . \overline{4}$, and $\sqrt{29}$ from least to greatest.
A. $5 \frac{2}{3}, 5 . \overline{4}, \sqrt{29}, \sqrt{26}$
B. $\sqrt{26}, \sqrt{29}, 5 \frac{2}{3}, 5 . \overline{4}$
C. $5 \frac{2}{3}, 5 . \overline{4}, \sqrt{26}, \sqrt{29}$
(D.) $\sqrt{26}, \sqrt{29}, 5 . \overline{4}, 5 \frac{2}{3}$

EXAMPIE Solve Equations

(3) A. Solve $w^{2}=169$. Round to the nearest tenth, if necessary.

$$
\begin{aligned}
w^{2} & =169 \\
\sqrt{w^{2}} & =\sqrt{169} \\
w & =\sqrt{169} \text { or }-\sqrt{169}
\end{aligned}
$$

Write the equation.
Take the square root of each side.
Find the positive and negative square root.

$$
w=13 \text { or } w=-13
$$

Answer: The solutions are 13 and -13.

EXAMPLE Solve Equations

(3) B. Solve $r^{2}=50$. Round to the nearest tenth, if necessary.

$$
r^{2}=50
$$

$$
\sqrt{r^{2}}=\sqrt{50}
$$

$$
r=\sqrt{50} \text { or }-\sqrt{50}
$$

$$
r \approx 7.1 \text { or } r \approx-7.1
$$

Write the equation.
Take the square root of each side.
Find the positive and negative square root.

Use a calculator.

Answer: The solutions are 7.1 and -7.1 .
(3) A. Solve the equation $m^{2}=81$. Round to the nearest tenth, if necessary.
A. 8
B. 8 and -8
C. 9
D. 9 and -9
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$

ClleCK Your Progress

(3) B. Solve the equation $h^{2}=24$. Round to the nearest tenth, if necessary.
A. 4.899 and $\mathbf{- 4 . 8 9 9}$
B. 4.9
C. 4.9 and -4.9
D. 5 and -5

Real-World EXAMPLE

(4) HANG GLIDING The formula for aspect ratio R is $R=\frac{s^{2}}{A}$, where s is the wingspan in feet and A is the area of the wing. What is the aspect ratio of a hang glider if the wingspan is 16 feet and the area of the wing is 40 square feet?
$R=\frac{s^{2}}{A}$
Write the formula.
$R=\frac{(16)^{2}}{40}$ Replace s with 16 and A with 40.
$R=\frac{256}{40} \quad 16 \cdot 16=256$
$R=6.4 \quad$ Divide .
Answer: 6.4

The Real Number System

CHECK Your Progress

(4) ELECTRICITY When a current of I amperes flows through a light bulb with resistance R ohms, electrical energy is converted to heat at a power of P watts. The power is related to the current and resistance by the equation $P=R R$. What is the current for a light bulb of power 25 watts and resistance of 7.3 ohms? Round to the nearest hundredth.
A. 0.47 amps
B. 1.85 amps
C. 2.64 amps
D. 3.42 amps

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

Lesson Menu

Five-Minute Check (over Lesson 9-2)
Main Ideas and Vocabulary
Key Concept: Angles of a Triangle
Example 1: Find Angle Measures
Example 2: Use Ratios to Find Angle Measures
Key Concept: Types of Angles
Example 3: Classify Angles
Key Concept: Classify Triangles
Example 4: Classify Triangles

Main Ideas

- Find the missing angle measure of a triangle.
- Classify triangles by properties and attributes.

New Vocabulary

- line segment
- triangle
- vertex
- acute angle
- right angle
- obtuse angle
- straight angle
- acute triangle
- obtuse triangle
- right triangle
- congruent
- scalene triangle
- isosceles triangle
- equilateral triangle

KEY CONCEPT Angles of a Triangle

Words The sum of the measures of the angles of a triangle is 180°.
Model

$$
\text { Symbols } \quad x+y+z=180
$$

COncepts in MQtion

Animation:
Triangles
Click here to view!

EXAMPLE Find Angle Measures

(1) Find the value of x in $\triangle D E F$.

$$
\begin{aligned}
m \angle D+m \angle E+m \angle F & =180 \\
100+33+x & =180 \\
133+x & =180 \\
133-133+x & =180-133 \\
x & =47
\end{aligned}
$$

Answer: x is 47 and the measure of $\angle F$ is 47°.

STHECK Your Progress,

(1) Find the value of x in $\triangle M N O$.
(A.) 57
B. 123

C. 139
D. 303

EXAMPL: Use Ratios to Find Angle Measures

(2) ALGEBRA The measures of the angles of a certain triangle are in the ratio 2:3:5. What are the measures of the angles?

Words The sum of the measures is 180°.

Variable Let $2 x$ represent the measure of the first angle, $3 x$ the measure of the second angle, and $5 x$ the measure of the third angle.
Equation $2 x+3 x+5 x=180 \quad$ The sum of the measures is 180 .

EXAMPLE
 Use Ratios to Find Angle Measures

(2) $10 x=180$
$\frac{10 x}{10}=\frac{180}{10}$

$$
x=18
$$

Combine like terms.

Divide each side by 10.
Simplify.

Since $x=18,2 x=2(18)$ or $36,3 x=3(18)$ or 54 , and $5 x=5(18)$ or 90 .

Answer: The measures of the angles are $36^{\circ}, 54^{\circ}$, and 90°.

C) CHECK Your Progress

(2) ALGEBRA The measures of the angles of a certain triangle are in the ratio 3:5:7. What are the measures of the angles?
A. $12^{\circ}, 60^{\circ}, 84^{\circ}$

0\%
B. $30^{\circ}, 50^{\circ}, 70^{\circ}$
(C. $\mathbf{3 6}{ }^{\circ}, \mathbf{6 0}, 84^{\circ}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. $40^{\circ}, 60^{\circ}, 80^{\circ}$

$9-3$ Triangles

EXAMPE: Classify Angles

(3) A. Classify the angle as acute, obtuse, right, or straight.
$m \angle K L M<90$

Answer: $\angle K L M$ is acute.

EXAMPE: Classify Angles

(3) B. Classify the angle as acute, obtuse, right, or straight.

$m \angle N P Q=180$

Answer: $\angle N P Q$ is straight.

EXAMPLE Classify Angles

(3) C. Classify the angle as acute, obtuse, right, or straight.
$m \angle R S T>90$

Answer: $\angle R S T$ is obtuse.

ChIECK Your Progress:

(3) A. Classify the angle as acute, obtuse, right, or straight.
A. acute
B. obtuse

(C.) right

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

D. straight

Ch ChECK Your Progress:

(3) B. Classify the angle as acute, obtuse, right, or straight.
A. acute

0\%
B. obtuse
C. right
D. straight

Cons firt

ChIECK Your Progress:

(3) C. Classify the angle as acute, obtuse, right, or straight.
A. acute
B. obtuse

C. right

$$
\triangle \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

D. straight

Comest iftr

Triangles

KEY CONCEPT	Obtuse Triangle	Classify Triangles
Acute Triangle	Right Triangle	
all acute angles	Isosceles Triangle	all sides congruent
Scalene Triangle	at least two sides congruent	one right angle

EXAMPLE Classify Triangles

(4) Classify the triangle by its angles and by its sides.

Angles All angles are acute.
Sides All sides are congruent.

Answer: The triangle is an acute equilateral triangle.

CHECK Your Progress

(4) Classify the triangle by its angles and by its sides.
A. acute scalene

B. acute isosceles
C. obtuse scalene
D. obtuse isosceles

(c) Mathe Chapter

RESOURCES $\square \sqrt{ } \sqrt{ } \sqrt{ }$

Lesson Menu

Five-Minute Check (over Lesson 9-3)
Main Ideas and Vocabulary
Key Concept: Pythagorean Theorem
Example 1: Find the Length of the Hypotenuse
Example 2: Solve a Right Triangle
Example 3: Standardized Test Example
Example 4: Identify a Right Triangle

Main Ideas

- Use the Pythagorean Theorem to find the length of the side of a right triangle.
- Use the converse of the Pythagorean Theorem to determine whether a triangle is a right triangle.

New Vocabulary

- legs
- hypotenuse
- Pythagorean Theorem
- solving a right triangle
- converse

Words If a triangle is a right triangle, then the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.
Model

$$
\begin{array}{ll}
\text { Symbols } & c^{2}=a^{2}+b^{2} \\
\text { Example } & 5^{2}=3^{2}+4^{2} \\
& 25=9+16 \\
& 25=25
\end{array}
$$

COncepts in MQtion

Interactive Lab:
Pythagorean Theorem

EXAMPLE Find the Length of the Hypotenuse

(1) Find the length of the hypotenuse of the right triangle.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=21^{2}+20^{2}
\end{aligned}
$$

Pythagorean Theorem
Replace a with 21

20 ft and b with 20 .
$c^{2}=441+400 \quad$ Evaluate 21^{2} and 20^{2}.
$c^{2}=841 \quad$ Add 441 and 400.
$\sqrt{c^{2}}=\sqrt{841}$
$c=29$
Answer: The length of the hypotenuse is 29 feet.

CHECK Your Progress:
(1) Find the length of the hypotenuse of the right triangle in meters.

A. 25
B. 12.5
(C. 5
D. 2.6

CheckPoint

EXAMPIE Solve a Right Triangle

(2) Find the length of the leg of the right triangle to the nearest tenth.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
11^{2} & =8^{2}+b^{2} \\
121 & =64+b^{2} \\
121-64 & =64+b^{2}-64 \\
57 & =b^{2} \\
\sqrt{57} & =\sqrt{b^{2}}
\end{aligned}
$$ Theorem

Replace c with 11 and a with 8.
Evaluate 11^{2} and 8^{2}.
Subtract 64 from each side. Simplify.

Take the square root of each side.

EXAMPL: Solve a Right Triangle

(2) 2nd $[\sqrt{ }] 57$ ENTER 7.549834435

Answer: Then length of the leg is about 7.5 meters.

ClIECK Your Progress

(2) Find the length of the leg of the right triangle to the nearest tenth.
A. 7 in .

(B.) 12.7 in . 0\%

C. 13.5 in .
D. 17 in .

$$
\square \mathbf{A} \square \mathbf{B} \square \mathbf{C} \square \mathrm{D}
$$

Standardized Test EXAMPLE

(3) A building is 10 feet tall. A ladder is positioned against the building so that the base of the ladder is 3 feet from the building. About how long is the ladder in feet?
A 10.0 feet B 12.4 feet
C 10.4 feet D 14.9 feet
Read the Test Item
Make a drawing to illustrate the problem. The ladder, ground, and side of the house form a right triangle.
Solve the Test Item Use the Pythagorean Theorem to find
 the length of the ladder.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =3^{2}+10^{2} \\
c^{2} & =9+100 \\
c^{2} & =109 \\
\sqrt{c^{2}} & =\sqrt{109} \\
c & \approx 10.4
\end{aligned}
$$

Pythagorean Theorem
Replace a with 3 and b with 10.
Evaluate 3^{2} and 10^{2}.
Simplify.
Take the square root of each side.
Round to the nearest tenth.

Answer: The ladder is about 10.4 feet tall.

ChlECK Your Progress

(3) MULTIPLE-CHOICE TEST ITEM An 18-foot ladder is placed against a building which is 14 feet tall. About how far is the base of the ladder from the building?
A. 11.6 feet
B. 10.9 feet
C. 11.3 feet

$$
\triangle \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

D. 11.1 feet

EXAWMPLE Identify a Right Triangle

(4) A. The measures of three sides of a triangle are given. Determine whether the triangle is a right triangle. $48 \mathrm{ft}, 60 \mathrm{ft}, 78 \mathrm{ft}$

$$
c^{2}=a^{2}+b^{2} \quad \text { Pythagorean Theorem }
$$

$$
78^{2} \stackrel{?}{=} 48^{2}+60^{2}
$$

Replace c with 78, a with 48, and b with 60 .
$6084 \stackrel{?}{=} 2304+3600 \quad$ Evaluate $78^{2}, 48^{2}$, and 60^{2}. $6084 \neq 5904 \quad$ Simplify.
The triangle is not a right triangle.
Answer: no

EXAMPLE Identify a Right Triangle

(4) B. The measures of three sides of a triangle are given. Determine whether the triangle is a right triangle. $24 \mathrm{~cm}, 70 \mathrm{~cm}, 74 \mathrm{~cm}$

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
74^{2} \stackrel{?}{=} 24^{2}+70^{2}
\end{gathered}
$$

Pythagorean Theorem
Replace c with 74 , a with 24 , and b with 70 .
$5476 \stackrel{?}{=} 576+4900 \quad$ Evaluate $74^{2}, 24^{2}$, and 70^{2}. $5476=5476 \quad$ Simplify.
The triangle is a right triangle.
Answer: yes

ChIECK Your Progress

(4) A. The measures of three sides of a triangle are given. Determine whether the triangle is a right triangle. 42 in., 61 in., 84 in.
A. Yes, the triangle is a right triangle.
B. No, the triangle is not a right triangle.

(4) B. The measures of three sides of a triangle are given. Determine whether the triangle is a right triangle. $16 \mathrm{~m}, 30 \mathrm{~m}, 34 \mathrm{~m}$
(A.) Yes, the triangle is a right triangle.
B. No, the triangle is not a right triangle.

The Distance Formula

Lesson Menu

Five-Minute Check (over Lesson 9-4)
Main Idea and Vocabulary
Key Concept: Distance Formula
Example 1: Use the Distance Formula
Example 2: Use the Distance Formula to Solve a Problem

Example 3: Real-World Example

Main Idea

- Use the Distance Formula to determine lengths on a coordinate plane.

New Vocabulary

- Distance Formula

KEY CONCEPT

Distance Formula

Words The distance d between two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, is given by

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Model

EXAMPLE Use the Distance Formula

(1) Find the distance between $M(8,4)$ and $N(-6,-2)$. Round to the nearest tenth, if necessary.
Use the Distance Formula.

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \text { Distance Formula } \\
& M N=\sqrt{(-6-8)^{2}+(-2-4)^{2}} \\
& M N=\sqrt{(-14)^{2}+(-6)^{2}} \\
& \begin{array}{l}
\left(x_{1}, y_{1}\right)=(8,4), \\
\left(x_{2}, y_{2}\right)=(-6,-2)
\end{array} \\
& M N=\sqrt{196+36} \\
& \text { Simplify. } \\
& \begin{array}{l}
\text { Evaluate }(-14)^{2} \text { and } \\
(-6)^{2} .
\end{array}
\end{aligned}
$$

EXAMPIE Use the Distance Formula

(1) $M N=\sqrt{232}$

Add 196 and 36.
$M N \approx 15.2$
Take the square root.

Answer: The distance between points M and N is about 15.2 units.

CHECK Your Progress

(1) Find the distance between $A(-4,5)$ and $B(3,-9)$. Round to the nearest tenth, if necessary.
A. 4.1
B. 8.1
C. 14.0
D. 15.7

(5) Maith Chapter

RESOURGES $\square \sqrt{ } \sqrt{ }$

EXAMPLE

Use the Distance Formula to Solve a Problem

(2) GEOMETRY Find the perimeter of $\triangle X Y Z$ to the nearest tenth.

First, use the Distance Formula to find the length of each side of the triangle.

Side $\overline{X Y:} X(-5,1), Y(-2,4)$

Distance Formula

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(-5,1), \\
& \left(x_{2}, y_{2}\right)=(-2,4)
\end{aligned}
$$

ExAMPIE

Use the Distance Formula to Solve a Problem

(2) $X Y=\sqrt{(3)^{2}+(3)^{2}}$
$X Y=\sqrt{9+9}$
$X Y=\sqrt{18}$
Side $\overline{Y Z}: Y(-2,4), Z(-3,-3)$

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
Y Z & =\sqrt{\left[(-3-(-2)]^{2}+(-3-4)^{2}\right.} \\
Y Z & =\sqrt{(-1)^{2}+(-7)^{2}}
\end{aligned}
$$

Simplify.
Evaluate powers.
Simplify.

Distance Formula
$\left(x_{1}, y_{1}\right)=(-2,4)$,
$\left(x_{2}, y_{2}\right)=(-3,-3)$
Simplify.

EXAMPIE

Use the Distance Formula to Solve a Problem

(2) $Y Z=\sqrt{1+49}$
$Y Z=\sqrt{50}$
Side $\overline{Z X}: Z(-3,-3), X(-5,1)$

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$Z X=\sqrt{\left[(-5-(-3)]^{2}+\left[(1-(-3)]^{2}\right.\right.}$
$Z X=\sqrt{(-2)^{2}+(4)^{2}}$
$Z X=\sqrt{4+16}$

Evaluate powers.
Simplify.

Distance Formula
$\left(x_{1}, y_{1}\right)=(-3,-3)$,
$\left(x_{2}, y_{2}\right)=(-5,1)$
Simplify.
Evaluate powers.

ExAMPLE

Use the Distance Formula to Solve a Problem

(2) $Z X=\sqrt{20}$ Simplify.

Then add the lengths of the sides to find the perimeter.

$$
\begin{aligned}
\sqrt{18}+\sqrt{50}+\sqrt{20} & \approx 4.243+7.071+4.472 \\
& \approx 15.786
\end{aligned}
$$

Answer: The perimeter is about 15.8 units.

STHECK Your Progress,

(2) GEOMETRY Find the perimeter of $\triangle X Y Z$ to the nearest tenth.
(A.) 21.3 units
B. 14.6 units

C. 13.4 units
D. 10.9 units

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

Real-World EXAMPLE

(3) Nikki kicks a ball from a position that is 2 yards behind the goal line and 4 yards from the side line $(-2,4)$. The ball lands 8 yards past the goal line and 2 yards from the same side line (8, 2). What distance, to the nearest tenth, was the ball kicked?

Real-World EXAMPLE

(3) Use the distance formula.
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{[8-(-2)]^{2}+(2-4)^{2}}$
$d=\sqrt{10^{2}+(-2)^{2}}$
$d=\sqrt{100+4}$
$d=\sqrt{104}$
$d \approx 10.2$
Answer: 10.2 yards

Distance Formula
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(-2,4)$
$\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(8,2)$
Simplify.
Evaluate powers.
Simplify.

Clleck your Progress
(3) MAPS The map of a college campus shows Gilmer Hall at $(7,3)$ and Watson House dormitory at $(5,4)$. If each unit on the map represents 0.1 mile, what is the distance between these buildings?
(A. 0.2 mi
B. 0.5 mi
C. 2.2 mi
D. 5 mi

Lesson Menu

Five-Minute Check (over Lesson 9-5)
Main Ideas and Vocabulary
Key Concept: Corresponding Parts of Similar Figures

Example 1: Find Measures of Similar Figures
Example 2: Real-World Example
Example 3: Real-World Example

Main Ideas

- Identify corresponding parts and find missing measures of similar figures.
- Solve problems involving indirect measurement using similar triangles.

New Vocabulary

- similar figures
- indirect measurement

Similar Figures and Indirect Measurement

KEY CONCEPT

Corresponding Parts of Similar Figures

Words If two figures are similar, then

- the corresponding angles have the same measure, and
- the corresponding sides are proportional.

Model

Symbols ? $A \cong ? X, ? B \cong ? Y, ? C \cong ? Z$ and $\frac{A B}{X Y}=\frac{B C}{Y Z}=\frac{A C}{X Z}$

COncepts in MQtion

BrainPOP:
Similar Triangles

EXAMPLE Find Measures of Similar Figures

(1) The figures are similar. Find the missing measure.

The scale factor that relates $M N O P$ to $A B C D$ is $\frac{3}{12}$ or $\frac{1}{4}$. Use the scale factor to relate dimensions in MNOP, x, to dimensions in $A B C D, y$.

$y=k x$
Direct variation equation

EXAMPLE
 Find Measures of Similar Figures

(1) $d=\frac{1}{4}(33)$
$d=8.25$

Substitute.
Multiply.

Answer: The value of x is 8.25 .

8/CHECK Your Progress:

(1) The figures are similar. Find the missing measure.
A. 1.5 m

(B. 6 m
C. 10 m
D. 16.7 m

(c) Math Chapter

RESOURGES $\square \sqrt{ } \sqrt{ }$

Real-World EXAMPLE

(2) MAPS A surveyor wants to find the distance RS across the lake. He constructs $\triangle P Q T$ similar to $\triangle P R S$ and measures the distances as shown. What is the distance across the lake?

The scale factor that relates $\triangle P Q T$ to $\triangle P R S$ is $\frac{25}{60}$ or $\frac{5}{12}$.
(2) $y=k x$

$$
12=\frac{5}{12} x
$$

$144=5 x$
$\frac{144}{5}=x$
$28.8=x$

Direct variation equation
Substitution
Multiply each side by 12.
Divide each side by 5 .

Answer: The distance across the lake is 28.8 meters.

CHIECK Your Progress:

(2) MAPS In the figure, $\triangle M N O$ is similar to \triangle QPO. Find the distance across the park.
A. 1.9 mi

B. 3.1 mi
(C. 4.8 mi
D. 5.0 mi
(8) Math Chapter

RESOURCES $\square \sqrt{ } \sqrt{ } \sqrt{5}$

Real-World EXAMPLE

(3) MONUMENTS Suppose the San Jacinto Monument in LaPorte, Texas, casts a shadow of 285 feet at the same time a nearby tourist, who is 5 feet tall, casts a 2.5 -feet shadow. How tall is the San Jacinto Monument?

Explore You know the lengths of the shadows and the height of the tourist. You need to find the height of the San Jacinto Monument.
Plan Write and solve a proportion.
Solve

$$
\begin{aligned}
& \text { tourist's shadow } \longrightarrow \frac{2.5}{285}=\frac{5}{h} \longleftarrow \text { tourist's height } \\
& \text { building's shadow } \longrightarrow \text { building's height }
\end{aligned}
$$

(3) $2.5 \cdot h=285 \cdot 5$

$$
2.5 h=1425
$$

Find the cross products.
Multiply.

$$
h=570
$$

Divide each side by 2.5.

Answer: The height of the San Jacinto Monument is 570 feet.

CHECK Your Progress:

(3) BUILDING A man standing near a building casts a 2.5-foot shadow at the same time the building casts a 200 -foot shadow. If the man is 6 feet tall, how tall is the building?
A. 1200 feet
(B.) 480 feet
C. 83.3 feet

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

D. 13.3 feet

Chapter Resources Menu

$88 /$ CheckPoint Five-Minute Checks

H2 Math Tools
COncepts
in MQtion

$$
\mathrm{An}_{\mathrm{fm}} \mathrm{mation} \text { Triangles }
$$

Interactive $+\frac{\text { Pythagorean Theorem }}{}$
$\stackrel{\text { Brain }}{\text { POP }}$ Similar Triangles

Lesson 9-1 (over Chapter 8)
Lesson 9-2 (over Lesson 9-1)
Lesson 9-3 (over Lesson 9-2)
Lesson 9-4 (over Lesson 9-3)
Lesson 9-5 (over Lesson 9-4)
Lesson 9-6 (over Lesson 9-5)

Real Numbers and Right Triangles

Image Bank

To use the images that are on the following three slides in your own presentation:

1. Exit this presentation.
2. Open a chapter presentation using a full installation of Microsoft ${ }^{\circledR}$ PowerPoint ${ }^{\circledR}$ in editing mode and scroll to the Image Bank slides.
3. Select an image, copy it, and paste it into your presentation.

vinprs Real Numbers and Right Triangles

Image Bank

Image Bank

$\mid \leftarrow \leftarrow \Rightarrow$
(1) Solve $6 x=2 x-24$.
A. 6

$$
\text { B. } \frac{1}{6}
$$

C. $-\frac{1}{6}$
(D.) -6

$88 /$ CheckPoint
He
(2) Solve $2(4-3 x)=-4$.

A. 4

(B.) 2

0\%

C. -2
D. -4

Real Numbers and Right Triangles
 ChVo-Minute CHECK (over Chapter 8)

(3) Solve $3(2 x-3)=15$.

$$
\text { A. } 1
$$

B. 3

0\%
(C. 4
D. 6

Crivo-Minute CHECK (over Chapter 8)

(4) Which of the following shows the solution of $10-8 x \geq-14+4 x$ on a number line?
A.

(B.)

C.

D

(5) The perimeter of a rectangle is 48 inches. The length is 3 inches less than twice the width. What are the dimensions of the rectangle?
A. $w=4$ in., $\ell=10$ in.
B. $w=6$ in.,$\ell=9$ in.
C. $w=18$ in., $\ell=30 \mathrm{in}$.
(D.) $w=9$ in., $\ell=15 \mathrm{in}$.

Standardized Test Practice

(6) Austin's scores are shown in the table. Which inequality represents the score he must get in the third game to have an average of more than 150 ?

Game	Score
1	162
2	135
3	

(A.) $s>153$
B. $s \geq 153$
C. $s<153$
D. $s \leq 153$

Real Numbers and Right Triangles
 C) Fivo-Minute CHECK (over Lesson 9-1)

(1) Find $\sqrt{49}$.
(A.) 7
B. 6.5
C. 8
D. not possible

トた

Real Numbers and Right Triangles
 C) Fivo-Minute CHECK (over Lesson 9-1)

(2) Find $\sqrt{121}$.
(A. 11
B. 10

C. 10.5
D. not possible

(3) Estimate $-\sqrt{85}$ to the nearest whole number without using a calculator.
A. 10
0%
B. 9
(C.) -9
D. -10

(4) Estimate $\sqrt{70}$ to the nearest whole number without using a calculator.
A. -9
B. -8
(C. 8
D. 9

88/CheckPoint
$1 F \leftarrow \rightarrow$

(f) Fivo-Minute CHECK (over Lesson 9-1)

(5) The area of a square is $200 \mathrm{~cm}^{2}$. Estimate the length of a side of the square.
A. 13 cm
(B. $\mathbf{1 4 ~ c m}$
0%

C. 15 cm
D. 16 cm

Standardized Test Practice
(6) Between what two integers is $-\sqrt{30}$?
A. between -4 and -5

0\%
(B. between -5 and -6
C. between 4 or 5
D. between 5 and 6
(1) Name all of the sets of real numbers to which $0.545454 .$. belongs.
(A.) \mathbf{Q}
B. R
C. \mathbf{Q}, \mathbf{R}
D. Q, R, S

88/CheckPoint

Real Numbers and Right Triangles
 0 Fivo-Minute CHECK (over Lesson 9-2)

(2) Use $<,>$, or $=$ to make $\sqrt{38}-6 \frac{1}{4}$ a true statement.
(A.) $<$
B. >

0\%

88/CheckPoint
HFt

0 Fivo-Minute chieck \Rightarrow (over Lesson 9-2)

(3) Order $3.22 \ldots, \sqrt{10}, 3 \frac{1}{5}, \frac{7}{2}$ from least to greatest.
A. $3.22 \ldots, \sqrt{10}, \frac{7}{2}, 3 \frac{1}{5}$
B. $3.22 \ldots, \sqrt{10}, 3 \frac{1}{5}, \frac{7}{2}$
C. $\sqrt{10}, 3.22 \ldots, 3 \frac{1}{5}, \frac{7}{2}$
(D. $\sqrt{10}, 3 \frac{1}{5}, 3.22 \ldots, \frac{7}{2}$

0 Fivo-Minute chieck (over Lesson 9-2)

(4) Solve $y^{2}=12$. Round to the nearest tenth, if necessary.
A. 3.3, -3.3
B. 3.4, $\mathbf{- 3 . 4}$
C. $3.5,-3.5$
D. 3.6, $\mathbf{- 3 . 6}$

88/CheckPoint
$1 \leftarrow \leftarrow \rightarrow$

CRVO-Minute CHECK (over Lesson 9-2)
(5) Use the formula $r=\sqrt{\frac{A}{\pi}}$ where A is the area of the circle to find the radius of a circle whose area is

145 square feet.
A. 3.8 feet

B. 6.8 feet
C. 12.2 feet
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 23.1 feet

Five-Minute CHECK (over Lesson 9-2)

Standardized Test Practice

(6) Which number is not irrational?
A. $0.121121112 \ldots$
0\%
B. $\sqrt{55}$
C. $-\sqrt{1}$
D. $-3.14159 \ldots$

0 Five-Minute CHECK (over Lesson 9-3)

(1) Find the value of x, and classify the triangle in the image as acute, right, or obtuse.

A. 21; acute
B. 79; acute
C. 90; right
D. 101; obtuse

$88 /$ CheckPoint

0 Fivo-Minute chieck \Rightarrow (over Lesson 9-3)

(2) Find the value of x, and classify the triangle in the image as acute, right, or obtuse.
A. 20; acute

(B.) 35; right

0\%
C. 55; acute
D. 90; right
C) FNo-Minute CHECK (over Lesson 9-3)
(3) The measures of the angles of a triangle are in the ratio 2:3:4. What is the measure of each angle?
(A. $\mathbf{4 0} 0^{\circ}, \mathbf{6 0}, \mathbf{8 0}^{\circ}$

0\%
B. $30^{\circ}, 60^{\circ}, 90^{\circ}$
C. $30^{\circ}, 50^{\circ}, 120^{\circ}$
D. $20^{\circ}, 40^{\circ}, 80^{\circ}$
C) FNo-Minute CHECK (over Lesson 9-3)
(4) The measure of the angles of a triangle are in the ratio 1:1:7. What is the measure of the obtuse angle of the triangle?
A. 70°
B. 105°
C. 120°

(D. 140°

88/CheckPoint
$1 \leftarrow \leftarrow \rightarrow$

Real Numbers and Right Triangles

Five-Minute CHECK (over Lesson 9-3)
(5) Determine whether the statement is sometimes, always, or never true. A scalene triangle has two congruent sides.
A. sometimes true

$$
0 \%
$$

B. always true
C. never true
\square A \square B C

Standardized Test Practice

(6) Classify the triangle shown in the figure by its angles and by its sides.

A. obtuse, isosceles
B. obtuse, scalene
C. acute, isosceles

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

D. acute, scalene
(1) If c is the measure of the hypotenuse, find c when $a=8$ and $b=15$. Round to the nearest tenth, if necessary.
A. 15
B. 17
C. 20
D. 23

(2) If c is the measure of the hypotenuse, find b when $a=6$ and $c=16$. Round to the nearest tenth, if necessary.
A. 17.1
B. 16 |
(C.) 14.8
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 10
(3) Determine whether the triangle is a right triangle, if the lengths of its three sides are given by $a=7$, $b=24$, and $c=25$.
(A.) yes
B. no
(4) Determine whether the triangle is a right triangle, if the lengths of its three sides are given by $a=10$, $b=12$, and $c=15$.
A. yes 0\%
0\%
(B.) no
(5) A computer screen has a diagonal of 14 inches. The width of the screen is 11 inches. Find the height of the screen. Round to the nearest tenth, if necessary.
A. 25 in .

B. 17.8 in.
(C.) 8.7 in .
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 3 in .

0 Fivo-Minute CHECK (over Lesson 9-4)

Standardized Test Practice

(6) What is the length of the diagonal of the square shown in the figure?
A. 6 in.

B. 8.5 in .

0\%
C. 9 in .
(D.) 12.7 in .
$1+\leftrightarrow \Rightarrow$

Prvo-Minute CHECK (over Lesson 9-5)

(1) Find the distance between the points $A(2,-3)$ and $B(8,5)$. Round to the nearest tenth, if necessary.
A. 5.2
B. 7
C. 10
D. 12.8

H
(2) Find the distance between the points $C(4,-1)$ and $D(-3,-4)$. Round to the nearest tenth, if necessary.
A. 9
(B.) 7.6
C. 5
D. 3.1

F) Fivo-Minute CHECK (over Lesson 9-5)

(3) Find the coordinates of the midpoint of the segment with endpoints $G(-5,0)$ and $H(-1,6)$.
A. $(2,-3)$

0\%
B. $(-3,2)$
C. $(3,-3)$
(D.) $(-3,3)$

FIVO-Minute CHECK (over Lesson 9-5)

(4) Find the perimeter of the figure shown. Round to the nearest tenth, if necessary.
A. 23.3

(C. 24.3
D. 24.4

Standardized Test Practice

(5) The design for a playground is shown on the grid. The water fountain will be placed halfway between the swings and the slide. What will be the coordinates of the water fountain?
(A.) $(1,0)$

B. $(4,0)$
C. $(0,1)$
D. $(1,4)$

